×

Real singular Del Pezzo surfaces and threefolds fibred by rational curves. I. (English) Zbl 1200.14109

The main result of the paper under review is the following:
Theorem. Let \(X\) be a projective surface defined over \(\mathbb R\). Suppose that \(X\) is geometrically rational with Du Val singularities. Then, a connected component \(M\) of the topological normalization of the set \(X(\mathbb R)\) of real points of \(X\) contains at most four Du Val singular points that are either not of type \(A^-\) or of type \(A^-\) but globally separating.
Applying this theorem to rational curve fibrations over rational surfaces, the authors answer two questions proposed by J. Kollár [J. Math. Sci., New York 94, No. 1, 996–1020 (1999; Zbl 0964.14014)]. The first of these applications is the following:
Corollary. Let \(W\to X\) be a real smooth projective \(3\)-fold fibred by rational curves over a geometrically rational surface \(X\). Suppose that \(W(\mathbb R)\) is orientable, and let \(N\) be a connected component of \(W(\mathbb R)\). Then, \(N=N'\#^a\mathbb P^3(\mathbb R)\#^b(S^1\times S^2)\), and denote \(k(N)\) the number of lens spaces if \(N'\) is a sum of lens spaces, and let \(k(N)\) be the number of multiple fibers if \(N'\to F\) is a Seifert fibration. Then, \(k(N)\leq 4\).
The second application is the following one:
Corollary. Let \(W\to X\) be a real smooth projective \(3\)-fold fibred by rational curves over a geometrically rational surface \(X\). Suppose that the fibration is defined over \(\mathbb R\) and that \(W(\mathbb R)\) is orientable. Let \(N\) be a connected component of \(W(\mathbb R)\) that admits a Seifert fibration \(g:N\to S^1\times S^1\). Then, \(g\) has no multiple fibers. furthermore, \(X\) is rational ver \(\mathbb R\) and \(W(\mathbb R)\) is connected.

MSC:

14P10 Semialgebraic sets and related spaces
14P25 Topology of real algebraic varieties

Citations:

Zbl 0964.14014

References:

[1] L. Brusotti, Sulla “piccola variazione” di una curva piana algebrica reale, Rend. Rom. Acc. Lincei 30 (1921), 375–379. · JFM 48.0729.02
[2] D. M. Burns and J. Wahl, Local contributions to global deformations of surfaces, Invent. Math. 26 (1974), 67–88. · Zbl 0288.14010 · doi:10.1007/BF01406846
[3] A. Comessatti, Sulla connessione delle superfizie razionali reali, Ann. di Mat. 23 (1914), 215–283. · JFM 45.0889.02
[4] M. Demazure, Surfaces de Del Pezzo, II, III, IV et V, Séminaire sur les singularités des surface (M. Demazure, H. Pinkham, B. Teissier, eds.), Lecture Notes in Math., 777, Springer-Verlag, Berlin, 1980.
[5] A. Degtyarev, I. Itenberg, and V. Kharlamov, Real Enriques surfaces, Lecture Notes in Math., 1746, Springer-Verlag, Berlin, 2000.
[6] H. Grauert, Der Satz von Kuranishi für kompakte komplexe Räume, Invent. Math. 25 (1974), 107–142. · Zbl 0286.32015 · doi:10.1007/BF01390171
[7] J. Hempel, 3-Manifolds, Ann. of Math. Stud., 86, Princeton Univ. Press, Princeton, NJ, 1976.
[8] J. Huisman and F. Mangolte, Every orientable Seifert 3-manifold is a real component of a uniruled algebraic variety, Topology 44 (2005), 63–71. · Zbl 1108.14048 · doi:10.1016/j.top.2004.03.003
[9] ——, Every connected sum of lens spaces is a real component of a uniruled algebraic variety, Ann. Inst. Fourier (Grenoble) 55 (2005), 2475–2487. · Zbl 1092.14070 · doi:10.5802/aif.2167
[10] J. Kollár, Real algebraic threefolds. I. Terminal singularities. Dedicated to the memory of Fernando Serrano, Collect. Math. 49 (1998), 335–360. · Zbl 0948.14013
[11] ——, Real algebraic threefolds. II. Minimal model program, J. Amer. Math. Soc. 12 (1999), 33–83. JSTOR: · Zbl 0964.14013 · doi:10.1090/S0894-0347-99-00286-6
[12] ——, Real algebraic threefolds. III. Conic bundles, J. Math. Sci. (New York) 94 (1999), 996–1020. · Zbl 0964.14014 · doi:10.1007/BF02367244
[13] ——, Real algebraic threefolds. IV. Del Pezzo fibrations, Complex analysis and algebraic geometry, pp. 317–346, de Gruyter, Berlin, 2000. · Zbl 1078.14088
[14] ——, The topology of real algebraic varieties, Current Developments in Mathematics, 2000, pp. 197–231, International Press, Somerville, MA, 2001.
[15] J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1–7. JSTOR: · Zbl 0108.36501 · doi:10.2307/2372800
[16] V. P. Palamodov, Deformations of complex spaces, Uspekhi Mat. Nauk 31 (1976), 129–194 (Russian). · Zbl 0332.32013
[17] H. Pinkham, Some local obstructions to deforming global surfaces, Leopoldina symposium: Singularities (Thüringen, 1978), Nova Acta Leopoldina (N.F.) 52 (1981), 173–178. · Zbl 0492.14021
[18] E. Sernesi, Deformations of algebraic schemes, Grundlehren Math. Wiss., 334, Springer-Verlag, Berlin, 2006. · Zbl 1102.14001 · doi:10.1007/978-3-540-30615-3
[19] R. Silhol, Real algebraic surfaces, Lecture Notes in Math., 1392, Springer-Verlag, Berlin, 1989. · Zbl 0691.14010 · doi:10.1007/BFb0088815
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.