×

Gauge theory and the analytic form of the geometric Langlands program. (English) Zbl 07802655

Summary: We present a gauge-theoretic interpretation of the “analytic” version of the geometric Langlands program, in which Hitchin Hamiltonians and Hecke operators are viewed as concrete operators acting on a Hilbert space of quantum states. The gauge theory ingredients required to understand this construction – such as electric-magnetic duality between Wilson and ’t Hooft line operators in four-dimensional gauge theory – are the same ones that enter in understanding via gauge theory the more familiar formulation of geometric Langlands, but now these ingredients are organized and applied in a novel fashion.

MSC:

81P05 General and philosophical questions in quantum theory
70H05 Hamilton’s equations
11F60 Hecke-Petersson operators, differential operators (several variables)
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
78A30 Electro- and magnetostatics
32C37 Duality theorems for analytic spaces

References:

[1] Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s Integrable System and Hecke Eigensheaves. Available at http://www.math.uchicago.edu/ drinfeld/langlands/QuantizationHitchin.pdf · Zbl 0864.14007
[2] Frenkel, E.: Lectures on the Langlands Program and Conformal Field Theory. In: Cartier, P. (ed.) Frontiers in Number Theory, Physics, and Geometry, II, pp. 387-533. Springer, Berlin (2007) . arXiv:hep-th/0512172 · Zbl 1196.11091
[3] Kapustin, A.; Witten, E., Electric-magnetic duality and the geometric Langlands program, Commun. Numer. Theor. Phys., 1, 1-236 (2007) · Zbl 1128.22013 · doi:10.4310/CNTP.2007.v1.n1.a1
[4] Ben-Zvi, D., Nadler, D.: Betti Geometric Langlands. arXiv:1606.08523 · Zbl 1457.14027
[5] Baez, JC; Dolan, J., Higher dimensional algebra and topological quantum field theory, J. Math. Phys., 36, 6073-6105 (1995) · Zbl 0863.18004 · doi:10.1063/1.531236
[6] Lurie, J.: On the classification of topological field theories. In: Current Developments in Mathematics, pp. 129-280. International Press, Somerville (2009). arXiv:0905.0465 · Zbl 1180.81122
[7] Freed, D.: The Cobordism Hypothesis. arXiv:1210.5100 · Zbl 1280.57025
[8] Etingof, P., Frenkel, E., Kazhdan, D.: An analytic version of the langlands correspondence for complex curves. In: Novikov, S., et al. (eds.) Integrability, Quantization, and Geometry II. Quantum Theories and Algebraic Geometry, Proceedings of Symposia in Pure Mathematics 103.2, pp. 137-202. American Mathematical Society (2021). arXiv:1908.09677 · Zbl 1475.14021
[9] Etingof, P., Frenkel, E., Kazhdan, D.: Hecke Operators and Analytic Langlands Correspondence For Curves Over Local Fields. arXiv:2103.01509 · Zbl 1539.11146
[10] Etingof, P., Frenkel, E., Kazhdan, D.: Analytic Langlands Correspondence for \({\rm PGL}_2\) on \(\mathbb{P}^1\) With Parabolic Structure Over Local Fields. arXiv:2106.05243 · Zbl 1495.14021
[11] Langlands, R.: On Analytic Form of Geometric Theory of Automorphic Forms. Available at http://publications.ias.edu/sites/default/files/iztvestiya-english_3.pdf · Zbl 0261.12010
[12] Teschner, J.: Quantization conditions of the quantum Hitchin system and the real geometric langlands correspondence. In: Dancer, J.E., et al. (eds.) Geometry and physics, vol. 1. Oxford University Press (2018). arXiv:1707.07873 · Zbl 1439.14051
[13] Nekrasov, N.A., Shatashvili, S.L.: Quantization of Integrable Systems and Four Dimensional Gauge Theories. doi:10.1142/9789814304634_0015. arXiv:0908.4052 [hep-th] · Zbl 1214.83049
[14] Teschner, J., Quantization of the Hitchin moduli spaces, Liouville theory, and the geometric Langlands correspondence I, Adv. Theor. Math. Phys., 15, 2, 471-564 (2011) · Zbl 1442.81059 · doi:10.4310/ATMP.2011.v15.n2.a6
[15] Nekrasov, N.; Witten, E., The omega deformation, branes, integrability, and Liouville theory, JHEP, 09, 092 (2010) · Zbl 1291.81265 · doi:10.1007/JHEP09(2010)092
[16] Nekrasov, N.; Rosly, A.; Shatashvili, S., Darboux coordinates, Yang-Yang functional, and gauge theory, Nucl. Phys. B Proc. Suppl., 216, 69-93 (2011) · doi:10.1016/j.nuclphysbps.2011.04.150
[17] Bonelli, G.; Maruyoshi, K.; Tanzini, A., Quantum Hitchin systems via \({\beta }\) -deformed matrix models, Commun. Math. Phys., 358, 3, 1041-1064 (2018) · Zbl 1386.81140 · doi:10.1007/s00220-017-3053-0
[18] Nekrasov, N.A., Rosly, A.A., Shatashvili, S.L.: Darboux coordinates, Yang-Yang functional, and gauge theory. Theor. Math. Phys. 181(1), 1206-1234 (2014). [erratum: Theor. Math. Phys. 182(2), 368 (2015)] doi:10.1007/s11232-014-0209-3 · Zbl 1308.81133
[19] Balasubramanian, A.; Teschner, J., Supersymmetric field theories and geometric Langlands: the other side of the coin, Proc. Symp. Pure Math., 98, 79-106 (2018) · Zbl 1452.81160 · doi:10.1090/pspum/098/01723
[20] Jeong, S., Nekrasov, N.: Opers, surface defects, and Yang-Yang functional. arXiv:1806.08270 [hep-th] · Zbl 1524.81101
[21] Gukov, S.; Witten, E., Branes and quantization, ATMP, 13, 1445-1518 (2009) · Zbl 1247.81378
[22] Gaiotto, D., Witten, E.: Probing Quantization Via Branes. arXiv:2107.12251
[23] Hitchin, N., The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. Third Series, 55, 59-126 (1987) · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[24] Kapustin, A.; Orlov, D., Remarks on A-branes, mirror symmetry, and the Fukaya category, J. Geom. Phys., 48, 84 (2003) · Zbl 1029.81058 · doi:10.1016/S0393-0440(03)00026-3
[25] Hitchin, N., Flat connections and geometric quantization, Commun. Math. Phys., 131, 347-380 (1990) · Zbl 0718.53021 · doi:10.1007/BF02161419
[26] Bershadsky, M.; Johansen, A.; Sadov, V.; Vafa, C., Topological reduction Of \(4 D\) SYM To \(2 D\) sigma models, Nucl. Phys. B, 448, 166-186 (1995) · Zbl 1009.58502 · doi:10.1016/0550-3213(95)00242-K
[27] Harvey, JA; Moore, GW; Strominger, A., Reducing \(S\) duality To \(T\) duality, Phys. Rev. D, 52, 7161-7167 (1995) · doi:10.1103/PhysRevD.52.7161
[28] Witten, E.: Geometric langlands from six dimensions. In: Kotiuga, P.R., (ed.) A celebration of the mathematical legacy of Raoul Bott (CRM Proceedings and Lecture Notes, Volume 50), pp. 281-310. arXiv:0905.2720 · Zbl 1216.81129
[29] Atiyah, MF; Bott, R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. R. Soc. Lond. A, 308, 523-615 (1983) · Zbl 0509.14014 · doi:10.1098/rsta.1983.0017
[30] Hitchin, N., Stable bundles and integrable systems, Duke Math. J., 54, 114 (1987) · Zbl 0627.14024 · doi:10.1215/S0012-7094-87-05408-1
[31] Gaiotto, D.; Witten, E., Knot invariants from four-dimensional gauge theory, Adv. Theor. Math. Phys., 16, 935-1086 (2012) · Zbl 1271.81108 · doi:10.4310/ATMP.2012.v16.n3.a5
[32] Frenkel, E.; Gaiotto, D., Quantum Langlands dualities of boundary conditions, \(D\)-modules, and conformal blocks, Commun. Numer. Theory Phys., 14, 199-313 (2020) · Zbl 1445.14024 · doi:10.4310/CNTP.2020.v14.n2.a1
[33] Faltings, G., Real projective structures on Riemann surfaces, Comp. Math., 48, 223-269 (1983) · Zbl 0511.30034
[34] Goldman, W., Projective structures With Fuchsian holonomy, J. Differ. Geom., 25, 297-326 (1987) · Zbl 0595.57012 · doi:10.4310/jdg/1214440978
[35] Witten, E., More on gauge theory and geometric langlands, Adv. Math., 327, 624-707 (2018) · Zbl 1392.81188 · doi:10.1016/j.aim.2017.06.021
[36] Kronheimer, P.: MSc. thesis, Oxford University (1986), unpublished
[37] Pauly, M., Monopole moduli spaces for compact 3-manifolds, Math. Ann., 311, 125-146 (1998) · Zbl 0920.58011 · doi:10.1007/s002080050180
[38] Hausel, T.; Thaddeus, M., Mirror symmetry, langlands duality, and the Hitchin system, Inv. Math., 153, 197-229 (2003) · Zbl 1043.14011 · doi:10.1007/s00222-003-0286-7
[39] Strominger, A.; Yau, S-T; Zaslow, E., Mirror symmetry is \(T\)-duality, Nucl. Phys. B, 479, 243-259 (1996) · Zbl 0896.14024 · doi:10.1016/0550-3213(96)00434-8
[40] Gaiotto, D.; Moore, GW; Neitzke, A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math., 234, 239-403 (2013) · Zbl 1358.81150 · doi:10.1016/j.aim.2012.09.027
[41] Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in \(\cal{N} =2\) supersymmetric Yang-Mills theory. Nucl. Phys. B 426, 19-52 (1994). [erratum: Nucl. Phys. B 430, 485-486 (1994)] doi:10.1016/0550-3213(94)90124-4. arXiv:hep-th/9407087 [hep-th] · Zbl 0996.81511
[42] Gorsky, A.; Krichever, I.; Marshakov, A.; Mironov, A.; Morozov, A., Integrability and Seiberg-Witten exact solution, Phys. Lett. B, 355, 466-474 (1995) · Zbl 0997.81567 · doi:10.1016/0370-2693(95)00723-X
[43] Donagi, R.; Witten, E., Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B, 460, 299-334 (1996) · Zbl 0996.37507 · doi:10.1016/0550-3213(95)00609-5
[44] Freed, DS, Special Kahler manifolds, Commun. Math. Phys., 203, 31-52 (1999) · Zbl 0940.53040 · doi:10.1007/s002200050604
[45] Gaiotto, D.; Moore, GW; Neitzke, A., Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys., 299, 163-224 (2010) · Zbl 1225.81135 · doi:10.1007/s00220-010-1071-2
[46] Balian, R., Parisi, G., Voros, A.: Quartic oscillator. In: Albeverio, S., et al. (eds.) Feynman path integrals, Lecture notes in physics, vol. 106. Springer, Berlin (1979) · Zbl 0417.34094
[47] Voros, A.: The return of the quartic oscillator. The complex WKB method. Annales de l’I.H.P. Physique theorique, Tome 39(3), 211-338 (1983) · Zbl 0526.34046
[48] Voros, A.: Spectre de l’Equation de Schrödinger et Methode BKW. Publications mathematiques d’Orsay, Université de Paris-Sud, Departement de Mathematique, 425 (1982)
[49] Silverstone, HJ, JWKB Connection-Formula Problem Revisited via Borel Summation, Phys. Rev. Lett., 55, 2523 (1985) · doi:10.1103/PhysRevLett.55.2523
[50] Gaiotto, D.: Opers and TBA. arXiv:1403.6137 [hep-th]
[51] Biswas, I.; Huisman, J.; Hurtubise, J., The moduli space of stable vector bundles over a real algebraic curve, Math. Ann., 347, 201-233 (2010) · Zbl 1195.14048 · doi:10.1007/s00208-009-0442-5
[52] Biswas, I.; Garcia-Prada, O.; Hurtubise, J., Pseudoreal principal \(G\)-bundles over a real curve, J. Lond. Math. Soc., 93, 47-64 (2015) · Zbl 1352.14039 · doi:10.1112/jlms/jdv055
[53] Baraglia, D.; Schaposnik, L., Higgs bundles and \((A, B, A)\)-branes, Commun. Math. Phys., 331, 1271-1300 (2014) · Zbl 1311.53058 · doi:10.1007/s00220-014-2053-6
[54] Baraglia, D.; Schaposnik, L., Real structures on moduli spaces of Higgs bundles, Adv. Theor. Math. Phys., 20, 525-51 (2016) · Zbl 1372.81165 · doi:10.4310/ATMP.2016.v20.n3.a2
[55] Biswas, I.; Garcia-Prada, O., Antiholomorphic involutions of the moduli space of Higgs bundles, J. de l’Ecole Polytechnique, 2, 35-54 (2015) · Zbl 1333.14032 · doi:10.5802/jep.16
[56] Gukov, S.; Witten, E., Rigid surface operators, Adv. Theor. Math. Phys., 14, 87-178 (2010) · Zbl 1203.81114 · doi:10.4310/ATMP.2010.v14.n1.a3
[57] Gaiotto, D.; Witten, E., Supersymmetric boundary conditions in N=4 super Yang-Mills theory, J. Stat. Phys., 135, 789-855 (2009) · Zbl 1178.81180 · doi:10.1007/s10955-009-9687-3
[58] Gaiotto, D., \(S\)-duality of boundary conditions and the geometric Langlands program, Proc. Symp. Pure Math., 98, 139-180 (2018) · Zbl 1452.81163 · doi:10.1090/pspum/098/01721
[59] Gaiotto, D., Twisted compactifications of 3d \({\cal{N}} = 4\) theories and conformal blocks, JHEP, 02, 061 (2019) · Zbl 1411.81192 · doi:10.1007/JHEP02(2019)061
[60] Witten, E.: Fivebranes and knots. arXiv:1101.3216 [hep-th] · Zbl 1241.57041
[61] Witten, E.: A New Look At The Path Integral Of Quantum Mechanics. arXiv:1009.6032 [hep-th] · Zbl 1250.81060
[62] Gaiotto, D.; Rapcák, M., Vertex algebras at the corner, JHEP, 01, 160 (2019) · Zbl 1409.81148 · doi:10.1007/JHEP01(2019)160
[63] Costello, K., Dimofte, T., Gaiotto, D.: Boundary Chiral Algebras and Holomorphic Twists. arXiv:2005.00083 [hep-th] · Zbl 07678868
[64] Costello, K.; Gaiotto, D., Vertex operator algebras and 3d \({\cal{N} } = 4\) gauge theories, JHEP, 05, 018 (2019) · Zbl 1416.81185 · doi:10.1007/JHEP05(2019)018
[65] Benini, F.; Tachikawa, Y.; Xie, D., Mirrors of 3d Sicilian theories, JHEP, 09, 063 (2010) · Zbl 1291.81229 · doi:10.1007/JHEP09(2010)063
[66] Arakawa, T.: Chiral algebras of class \({\cal{S}}\) and Moore-Tachikawa symplectic varieties. arXiv:1811.01577 [math.RT]
[67] Fishel, S., Grojnowski, I., Teleman, C.: The Strong MacDonald Conjecture and Hodge Theory on the Loop Grassmannian. arXiv:math/0411355 · Zbl 1186.17010
[68] Vafa, C., Topological Landau-Ginzburg models, Mod. Phys. Lett. A, 6, 337-46 (1991) · Zbl 1020.81886 · doi:10.1142/S0217732391000324
[69] Witten, E.: Mirror manifolds and topological field theory. In: Essays on Mirror Manifolds . International Press (1992). arXiv:hep-th/9112056 · Zbl 0834.58013
[70] Witten, E.: Analytic continuation of Chern-Simons theory. In: Andersen, J.E., et al. (eds.) Chern-Simons Gauge Theory: Twenty Years After. AMS/IP Stud. Adv. Math., vol. 50 (2011). arXiv:1001.2933 · Zbl 1337.81106
[71] Donagi, R., Pantev, T.: Geometric langlands and nonabelian hodge theory. In: Cao, H.-D., et al. (eds.) Surveys in Differential Geometry, Vol. 13: Geometry, Analysis, and Algebraic Geometry, pp. 85-116. International Press, Somerville (2009) · Zbl 1245.14015
[72] Pal, S., Pauly, C.: The Wobbly divisors of the moduli space of rank-2 vector bundles. arXiv:1803.11315 · Zbl 1509.14068
[73] Pauly, C., Peón-Nieto, A.: Very stable bundles and properness of the Hitchin map (2017). arXiv:1710.10152 · Zbl 1409.14060
[74] Zelaci, H.: On very stability of principal \(G\)-bundles. arXiv:1804.04881 · Zbl 1430.14070
[75] Gukov, S., Witten, E.: Gauge theory, ramification, and the geometric Langlands correspondence. In: Jerison, D., et al. (eds.) Current Developments in Mathematics, pp. 35-180. International Press, Boston (2008). arXiv:hep-th/0612073 · Zbl 1237.14024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.