×

Sums of three squares of fractions of two variables. (Sommes de trois carrés de fractions en deux variables.) (French) Zbl 1118.11020

The Pythagoras number of the field \(\mathbb{R}(X,Y)\) is known to be 4 (i.e., every sum of squares is a sum of at most 4 squares, and there are sums of squares that are not sums of 3 squares). Every positive semi-definite polynomial in \(\mathbb{R}[X,Y]\) is a sum of squares in the quotient field, hence is a sum of at most four squares. The authors exhibit several new families of positive semi-definite polynomials in \(\mathbb{R}[X,Y]\) that cannot be written as sums of fewer than 4 squares in \(\mathbb{R}(X,Y)\). Their polynomials are monic of degree 4 in the variable \(Y\), the coefficients are polynomials in the variable \(X\). The coefficients are used to define certain elliptic curves over the field \(\mathbb{R}(X)\). The analysis of these curves yields criteria to decide whether or not a polynomial is a sum of 3 squares.

MSC:

11E10 Forms over real fields
11E25 Sums of squares and representations by other particular quadratic forms
12D15 Fields related with sums of squares (formally real fields, Pythagorean fields, etc.)
14H52 Elliptic curves
Full Text: DOI

References:

[1] Artin, E.: Über die Zerlegung definiter Funktionen in Quadrate. Hamb. Abh. 5, 100-115 (1927) · JFM 52.0122.01 · doi:10.1007/BF02952513
[2] Cassels, J.W.S., Ellison, W.J., Pfister, A.: On sums of squares and on elliptic curves over function fields. J. Number Theory 3, 125-149 (1971) · Zbl 0217.04302 · doi:10.1016/0022-314X(71)90030-8
[3] Christie, M.R.: Positive Definite Rational Functions of Two Variables Which Are Not the Sum of Three Squares. J. Number Theory 8, 224-232 (1976) · Zbl 0331.14017 · doi:10.1016/0022-314X(76)90104-9
[4] Colliot-Thélène, J.-L.: The Noether-Lefschetz theorem and sums of 4 squares in the rational function field R(x,y). Compositio 86, 235-243 (1993) · Zbl 0774.12002
[5] Hilbert, D.: Über die Darstellung definiter Formen als Summen von Formenquadraten. Math. Ann. 32, 342-350, (1888) = Ges. Abh. 2, pp. 154-164 · JFM 20.0198.02 · doi:10.1007/BF01443605
[6] Huisman, J., Mahé, L.: Geometrical aspects of the level of curves. J. Algebra 239, 647-674 (2001) · Zbl 1049.14015 · doi:10.1006/jabr.2000.8686
[7] Knapp, A.: Elliptic curves. Math. Notes, Princeton U. Press, 1993
[8] Lam, T.Y.: The algebraic theory of quadratic forms. Mathematics Lecture Note Series. W. A. Benjamin, Inc., 1973 · Zbl 0259.10019
[9] S. Lang, Survey of diophantine geometry, Springer (1997) · Zbl 0869.11051
[10] Macé, O.: Sommes de trois carrés en deux variables et représentation de bas degré pour le niveau des courbes réelles, Thèse de l?Université de Rennes 1, 2000, http://tel.ccsd.cnrs.fr/documents/archives0/00/00/62/39/index_fr. html
[11] Pfister, A.: Zur Darstellung definiter Funktionen als Summe von Quadraten. Invent. Math. 4, 229-237 (1967) · Zbl 0222.10022 · doi:10.1007/BF01425382
[12] Silverman, J.H., Tate, J.: Rational points on elliptic curves. Undergraduate texts in mathematics, Springer-Verlag, 1992 · Zbl 0752.14034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.