×

Symmetry of cyclic weighted shift matrices with pivot-reversible weights. (English) Zbl 1432.15010

Summary: We prove that every cyclic weighted shift matrix with pivot-reversible weights is unitarily similar to a complex symmetric matrix.

MSC:

15A21 Canonical forms, reductions, classification
15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory
47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)

References:

[1] M.T. Chien, J.Z. Liu, H. Nakazato, and T.Y. Tam. Toeplitz matrices are unitarily similar to symmetric matrices.Linear Multilinear Algebra, 65:2131-2144, 2017. · Zbl 1387.15030
[2] M.T. Chien and H. Nakazato. Hyperbolic forms associated with cyclic weighted shift matrices.Linear Algebra Appl., 439:3541-3554, 2013. · Zbl 1284.15011
[3] M.T. Chien and H. Nakazato. Determinantal representations of hyperbolic forms via weighted shift matrices.Appl. Math. Comput., 258:172-181, 2015. · Zbl 1338.15048
[4] M.T. Chien and H. Nakazato. Matrices unitarily similar to symmetric matrices.Proceedings of the 20th International Conference of Applied Mathematics, Budapest, Hungary, 86-91, 2015.
[5] M.T. Chien and H. Nakazato. Hyperbolic forms admit reversible weighted shift determinantal reprentation.Applied Math. Comput., 362:124595, 2019. · Zbl 1433.15011
[6] M. Fiedler. Geometry of the numerical range of matrices.Linear Algebra Appl., 37:81-96, 1981. · Zbl 0452.15024
[7] S.R. Garcia, D.E. Poore, and J.E. Tener. Unitary equivalence to a complex symmetric matrix: Low dimensions.Linear Algebra Appl., 437:271-284, 2012. · Zbl 1242.15009
[8] H.-L. Gau, M.C. Tsai, and H.C. Wang. Weighted shift matrices: Unitary equivalence, reducibility and numerical ranges. Linear Algebra Appl., 438:498-513, 2013. · Zbl 1261.15031
[9] F. Hausdorff. Das wertevorrat einer bilinearform.Math. Z., 3:314-316, 1919. · JFM 47.0088.02
[10] J.W. Helton and V. Vinnikov. Linear matrix inequality representations of sets.Comm. Pure Appl. Math., 60:654-674, 2007. · Zbl 1116.15016
[11] P.R. Huang and H. Nakazato. Cyclic weighted shift matrix with reversible weights.Ann. Funct. Anal., 10:72-80, 2019. · Zbl 1475.15027
[12] R. Kippenhahn. ¨Uber den wertevorrat einer Matrix.Math. Nachr., 6:193-228, 1951. · Zbl 0044.16201
[13] K. Lentzos, and L. Pasley. Determinantal representations of invariant hyperbolic plane curves.Linear Algebra Appl., 556:108-130, 2018. · Zbl 1400.14085
[14] C.K. Li and T.Y. Tam (editors). Special Issue on The Numerical Range and Numerical Radius.Linear Multilinear Algebra, 57(5), 2009.
[15] D. Plaumann, B. Sturmfels, and C. Vinzant. Computing linear matrix representations of Helton-Vinnikov curves. In: H. Dym et al. (editors),Mathematical Methods in Systems, Optimizations, and Control, Festschrift in honor of J. William Helton,Oper. Theory Adv. Appl., Birkh¨auser, Basel, 222:259-277, 2012. · Zbl 1328.14093
[16] O. Toeplitz. Das algebraische Analogon zu einem Satze von Fej´er.Math. Z., 2:187-197, 1918. · JFM 46.0157.02
[17] M.C. Tsai and P.Y. Wu. Numerical range of weighted shift matrices.Linear Algebra Appl., 435:243-254, 2011 · Zbl 1214.15015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.