×

Embeddability of real and positive operators. (English) Zbl 1522.47040

The problem of embedding a discrete object into a continuous one with the same properties appears in many forms and has been studied in many papers. In the present paper, the authors consider embeddability in the context of real and positive bounded linear operators. By real operators, they mean operators on complexifications of real Banach spaces which map real vectors to real vectors. While the authors investigate real embeddability for general bounded linear operators on Banach spaces, in their study of positive embeddability they restrict their considerations to finite and infinite matrices. In the end, it is shown that, contrary to the finite-dimensional case, real embeddability is typical for infinite matrices.

MSC:

47B01 Operators on Banach spaces
47B65 Positive linear operators and order-bounded operators
47B37 Linear operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
47D06 One-parameter semigroups and linear evolution equations
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)

Software:

mftoolbox

References:

[1] Elfving, G., Zur Theorie der Markoffschen Ketten, Acta Soc Sci Fennicae A 2, 8, 1-17 (1937) · JFM 63.0501.03
[2] Kingman, J., The imbedding problem for finite Markov chains, Z Wahrsch Verw Gebiete, 1, 14-24 (1962) · Zbl 0118.13501
[3] Davies, EB., Embeddable Markov matrices, Electron J Probab, 15, 1474-1486 (2010) · Zbl 1226.60102
[4] Baake, M.; Sumner, J., Notes on Markov embedding, Linear Algebra Appl, 594, 262-299 (2020) · Zbl 1440.60070
[5] Veerman, JJP; Kummel, E., Diffusion and consensus on weakly connected directed graphs, Linear Algebra Appl, 578, 184-206 (2019) · Zbl 1419.05093
[6] Singer, B.; Spilerman, S., The representation of social processes by Markov models, Am J Sociol, 82, 1-54 (1976)
[7] Verbyla, KL; Yap, VB; Pahwa, A., The embedding problem for Markov models of nucleotide substitution, PLoS One, 8, 7, e69187 (2013)
[8] Israel, RB; Rosenthal, JS; Wei, JZ., Finding generators for Markov chains via empirical transition matrices, with applications to credit ratings, Math Finance, 11, 245-265 (2001) · Zbl 0987.60086
[9] King, JL., The generic transformation has roots of all orders, Colloq Math, 84/85, 521-547 (2000) · Zbl 0972.37001
[10] de la Rue, T., A generic transformation can be embedded in a flow, Ann Inst H Poincaré Prob Stat, 39, 121-134 (2003) · Zbl 1082.37007
[11] Stepin, AM; Eremenko, AM., Nonuniqueness of an inclusion in a flow and the vastness of a centralizer for a generic measure-preserving transformation, Mat Sb, 195, 95-108 (2004) · Zbl 1082.37006
[12] Heyer, H., Probability measures on locally compact groups (1977), Berlin: Springer-Verlag, Berlin · Zbl 0373.60011
[13] Fisher, MJ., The embeddability of an invertible measure, Semigroup Forum, 5, 340-353 (197273) · Zbl 0259.47037
[14] Haase, M., The functional calculus for sectorial operators (2006), Basel: Birkhäuser Verlag, Basel · Zbl 1101.47010
[15] Haase, M., Functional calculus for groups and applications to evolution equations, J Evol Equ, 7, 529-554 (2007) · Zbl 1138.47034
[16] Eisner, T., Embedding operators into strongly continuous semigroups, Arch Math (Basel), 92, 451-460 (2009) · Zbl 1172.47029
[17] Cubitt, TS; Eisert, J.; Wolf, MM., The complexity of relating quantum channels to master equations, Commun Math Phys, 310, 383-418 (2012) · Zbl 1243.81100
[18] Müller-Hermes, A.; Reeb, D.; Wolf, MM., Quantum subdivision capacities and continuous-time quantum coding, IEEE Trans Inform Theory, 61, 565-581 (2015) · Zbl 1359.81093
[19] Engel, K-J; Nagel, R., One-parameter semigroups for linear evolution equations (2000), New York: Springer, New York · Zbl 0952.47036
[20] Speakman, JMO., Two Markov chains with a common skeleton, Z Wahrsch Verw Gebiete, 7, 224 (1967) · Zbl 0156.18504
[21] Cuthbert, JR., The logarithm function of finite-state Markov semi-groups, J Lond Math Soc, 6, 524-532 (1973) · Zbl 0279.60063
[22] Johansen, S., Some results on the imbedding problem for finite Markov chains, J Lond Math Soc, 8, 345-351 (1974) · Zbl 0287.60077
[23] Carette, P., Characterizations of embeddable 3 × 3 stochastic matrices with a negative eigenvalue, New York J. Math., 1, 120-129 (199495) · Zbl 0881.60069
[24] Casanellas, M, Fernández-Sánchez, J, Roca-Lacostena, J. The embedding problem for Markov matrices; 2020. Preprint arXiv:2005.00818. · Zbl 1508.60074
[25] Culver, WJ., On the existence and uniqueness of the real logarithm of a matrix, Proc Am Math Soc, 17, 1146-1151 (1966) · Zbl 0143.26402
[26] Horn, R.; Johnson, C., Matrix analysis (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 0704.15002
[27] Singer, B.; Spilerman, S., Social mobility models for heterogeneous populations, Sociol. Method, 5, 356-401 (19731974)
[28] Guerry, MA., On the embedding problem for discrete-time Markov chains, J Appl Probab, 50, 918-930 (2013) · Zbl 1306.60104
[29] Guerry, MA., Some results on the embeddable problem for discrete-time Markov models in manpower planning, Commun Stat Theory Methods, 43, 1575-1584 (2014) · Zbl 1294.60098
[30] Higham, NJ; Lin, L., On pth roots of stochastic matrices, Linear Algebra Appl, 435, 448-463 (2011) · Zbl 1223.15042
[31] Johnson, CR., Inverse M-matrices, Linear Algebra Appl, 47, 195-216 (1982) · Zbl 0488.15011
[32] Van-Brunt, A., Infinitely divisible nonnegative matrices, M-matrices, and the embedding problem for finite state stationary Markov chains, Linear Algebra Appl, 541, 163-176 (2018) · Zbl 1380.15032
[33] Bausch, J.; Cubitt, T., The complexity of divisibility, Linear Algebra Appl, 504, 64-107 (2016) · Zbl 1381.68094
[34] Higham, NJ., Functions of matrices: theory and computation (2008), Philadelphia (PA): Society for Industrial and Applied Mathematics (SIAM), Philadelphia (PA) · Zbl 1167.15001
[35] Higham, NJ., Computing real square roots of a real matrix, Linear Algebra Appl, 88/89, 405-430 (1987) · Zbl 0625.65032
[36] Muñoz, GA; Sarantopoulos, Y.; Tonge, A., Complexifications of real Banach spaces, polynomials and multilinear maps, Studia Math, 134, 1-33 (1999) · Zbl 0945.46010
[37] Schaefer, HH., Banach lattices and positive operators (1974), Springer · Zbl 0296.47023
[38] Keicher, V., On the peripheral spectrum of bounded positive semigroups on atomic Banach lattices, Arch Math (Basel), 87, 359-367 (2006) · Zbl 1102.47029
[39] Davies, EB., Triviality of the peripheral point spectrum, J Evol Equ, 5, 407-415 (2005) · Zbl 1098.47036
[40] Wolff, MPH., Triviality of the peripheral point spectrum of positive semigroups on atomic Banach lattices, Positivity, 12, 185-192 (2008) · Zbl 1152.47030
[41] Glück, J., Spectral and asymptotic properties of contractive semigroups on non-Hilbert spaces, J Oper Theory, 76, 3-31 (2016) · Zbl 1399.47117
[42] Nagel, R. (ed.), One-parameter semigroups of positive operators (1986), Berlin: Springer-Verlag, Berlin · Zbl 0585.47030
[43] Bátkai, A.; Kramar Fijavž, M.; Rhandi, A., Positive operator semigroups: from finite to infinite dimensions (2017), Basel: Birkhäuser: Cham: Springer, Basel: Birkhäuser · Zbl 1420.47001
[44] Tam, B-S; Huang, P-R., Nonnegative square roots of matrices, Linear Algebra Appl, 498, 404-440 (2016) · Zbl 1335.15042
[45] Kechris, AS., Classical descriptive set theory (1995), New York: Springer-Verlag, New York · Zbl 0819.04002
[46] Eisner, T.; Mátrai, T., On typical properties of Hilbert space operators, Israel J Math, 195, 247-281 (2013) · Zbl 1283.47004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.