×

Coupled derivative nonlinear Schrödinger III equation: Darboux transformation and higher-order rogue waves in a two-mode nonlinear fiber. (English) Zbl 1510.35318

Summary: The coupled derivative nonlinear Schrödinger III (cDNLSIII) equation describes pulse propagations in a two-mode nonlinear fiber. In this paper, we construct the \(N\)-fold generalized Darboux transformation (DT) with the limit approach, from which the general higher-order rogue wave solutions of the cDNLSIII equation are obtained. These solutions, divided into three categories, namely, rogue waves and rogue waves on multi-soliton and multi-breather backgrounds, have applications in nonlinear fiber communication. Furthermore, we present some interesting interactions between rogue waves and solitons or breathers and analyze the features of each type.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35C08 Soliton solutions
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI

References:

[1] Ablowitz, M. J.; Prinari, B.; Trubatch, A. D., Discrete and Continuous Nonlinear Schrödinger Systems (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1057.35058
[2] Dalfovo, F.; Giorgini, S.; Pitaevskii, L. P.; Stringari, S., Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys, 71, 463-512 (1999)
[3] Rogister, A., Parallel propagation of nonlinear low-frequency waves in high-\( \beta\) plasma, Phys. Fluids, 14, 2733-2739 (1971)
[4] Kaup, D. J.; Malomed, B. A.; Tasgal, R. S., Internal dynamics of a vector soliton in a nonlinear optical fiber, Phys. Rev. E, 48, 3049-3053 (1993)
[5] Radhakrishnan, R.; Lakshmanan, M.; Hietarinta, J., Inelastioc collision and switching of coupled bright solitons in optical fibers, Phys. Rev. E, 56, 2213-2216 (1997)
[6] Mu, G.; Qin, Z. Y.; Grimshaw, R., Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schrödinger equation, SIAM J. Appl. Math., 75, 1-20 (2015) · Zbl 1331.35323
[7] Ling, L. M.; Guo, B. L.; Zhao, L. C., High-order rogue waves in vector nonlinear Schrödinger equations, Phys. Rev. E, 89, 041201 (2014)
[8] Ling, L. M.; Zhao, L. C., Modulational instability and homoclinic orbit solutions in vector nonlinear Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 72, 449-471 (2019) · Zbl 1464.35328
[9] Feng, B. F., General N-soliton solution to a vector nonlinear Schrödinger equation, J. Phys. A, 47, 355203 (2014) · Zbl 1302.35346
[10] Zhang, G. Q.; Yan, Z. Y., Three-component nonlinear Schrödinger equations: modulational instability, Nth-order vector rational and semi-rational rogue waves, and dynamics, Commun. Nonlinear Sci. Numer. Simul., 62, 117-133 (2018) · Zbl 1470.35343
[11] Du, Z.; Tian, B.; Qu, Q. X.; Zhao, X. H., Characteristics of higher-order vector rogue waves to a coupled fourth-order nonlinear Schrödinger system in a two-mode optical fiber, Eur. Phys. J. Plus., 135, 241-249 (2020)
[12] Geng, X. G.; Li, R. M.; Xue, B., A vector general nonlinear Schrödinger equation with \(( m + n )\) components, J. Nonlinear Sci., 30, 991-1013 (2020) · Zbl 1437.35627
[13] Kanna, T.; Lakshmanan, M., Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödingerequations, Phys. Rev. Lett., 86, 5043-5046 (2001)
[14] Baronio, F.; Degasperis, A.; Conforti, M.; Wabnitz, S., Solutions of the vector nonlinear Schrödingerequations: evidence for deterministic rogue waves, Phys. Rev. Lett., 109, 044102 (2012)
[15] Li, R. M.; Geng, X. G., On a vector long wave-short wave-type model, Stud. Appl. Math., 144, 164-184 (2020) · Zbl 1454.35314
[16] Johnson, R. S., On the modulation of water waves in the neighbourhood of \(k h \approx 1.363\), Proc. R. Soc. Lond. A., 357, 131-141 (1977) · Zbl 0375.76017
[17] Anderson, D.; Lisak, M., Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides, Phys. Rev. A, 27, 1393-1398 (1983)
[18] Kaup, D. J.; Newell, A. C., An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 19, 789-801 (1978) · Zbl 0383.35015
[19] Chen, H. H.; Lee, Y. C.; Liu, C. S., Integrability of nonlinear hamiltonian systems by inverse scattering method, Phys. Scr., 20, 490-492 (1979) · Zbl 1063.37559
[20] Kakei, S.; Sasa, N.; Satsuma, J., Bilinearization of a generalized derivative nonlinear Schrödinger equation, J. Phys. Soc. Jpn., 64, 1519-1523 (1995) · Zbl 0972.35535
[21] Gerdjikov, V. S.; Ivanov, M. I., The quadradic bundle of general form and the nonlinear evolution equations; II. Hierarchies of hamiltonian structures, Bulg. J. Phys, 10, 130-143 (1983) · Zbl 0522.35082
[22] Matveev, V. B.; Salle, M. A., Darboux Transformations and Solitons (1991), Springer: Springer Berlin · Zbl 0744.35045
[23] Gu, C. H.; Hu, H. S.; Zhou, Z. X., Darboux transformations in integrable systems, Theory and their Applications to Geometry (2005), Springer: Springer Dordrecht · Zbl 1084.37054
[24] Cieśliński, J. L., Algebraic construction of the Darboux matrix revisited, J. Phys. A, 42, 404003 (2009) · Zbl 1193.37096
[25] Zhang, C. R.; Tian, B.; Qu, Q. X.; Liu, L.; Tian, H. Y., Vector bright solitons and their interactions of the couple Fokas-Lenells system in a birefringent optical fiber, Z. Angew. Math. Phys., 71, 18 (2020) · Zbl 1508.35164
[26] Chen, S. S.; Tian, B.; Chai, J.; Wu, X. Y.; Du, Z., Lax pair, binary Darboux transformations and dark-soliton interaction of a fifth-order defocusing nonlinear Schrödinger equation for the attosecond pulses in the optical fiber communication, Wave. Random Complex, 30, 389-402 (2020) · Zbl 1498.78032
[27] Gao, X. Y.; Guo, Y. J.; Shan, W. R., Shallow water in an open sea or a wide channel: auto- and non-auto-Bäcklund transformations with solitons for a generalized (2 + 1)-dimensional dispersive long-wave system, Chaos Solitons Fractals, 138, 109950 (2020) · Zbl 1490.35314
[28] Gao, X. Y.; Guo, Y. J.; Shan, W. R., Water-wave symbolic computation for the earth, Enceladus and Titan: the higher-order Boussinesq-Burgers system, auto- and non-auto-Bäcklund transformations, Appl. Math. Lett., 104, 106170 (2020) · Zbl 1437.86001
[29] Y.Q. Chen, B. Tian, Q.X. Qu, H. Li, X.H. Zhao, H.Y. Tian, M. Wang, J. Mod, Ablowitz Kaup Newell Segur system, conservation laws and Bäcklund transformation of a variable-coefficient Korteweg de Vries equation in plasma physics, fluid dynamics or atmospheric science, Int. Phys. B 34(2020) 2050226 · Zbl 1451.35158
[30] Gao, X. Y.; Guo, Y. J.; Shan, W. R., Hetero-Bäcklund transformation and similarity reduction of an extended (2 + 1)-dimensional coupled Burgers system in fluid mechanics, Phys. Lett. A, 384, 126788 (2020) · Zbl 1448.37084
[31] Gao, X. Y.; Guo, Y. J.; Shan, W. R., Viewing the solar system via a variable-coefficient nonlinear dispersive-wave system, Acta Mech., 231, 4415-4420 (2020) · Zbl 1451.86003
[32] Deift, P.; Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math., 137, 295-368 (1993) · Zbl 0771.35042
[33] Geng, X. G.; Liu, H., The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation, J. Nonlinear Sci., 28, 739-763 (2018) · Zbl 1390.35325
[34] Geng, X. G.; Wang, K. D.; Chen, M. M., Long-time asymptotics for the spin-1 Gross-Pitaevskii equation, Commun. Math. Phys., 384, 739-763 (2021)
[35] Geng, X. G.; Zhai, Y. Y.; Dai, H. H., Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy, Adv. Math., 263, 123-153 (2014) · Zbl 1304.37046
[36] Geng, X. G.; Zeng, X.; Wei, J., The application of the theory of trigonal curves to the discrete coupled nonlinear Schrödinger hierarchy, Ann. Henri Poincaré, 20, 2585-2621 (2019) · Zbl 1421.35335
[37] Wei, J.; Geng, X. G.; Zeng, X., The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices, Trans. Am. Math. Soc., 371, 1483-1507 (2019) · Zbl 1403.37078
[38] Zhai, Y. Y.; Geng, X. G.; Xue, B., Riemann theta function solutions to the coupled long wave-short wave resonance equations, Anal. Math. Phys., 10, 82-107 (2020) · Zbl 1482.35199
[39] Wu, J. P., Integrability aspects and multi-soliton solutions of a new coupled Gerdjikov-Ivanov derivative nonlinear Schrödingerequation, Nonlinear Dyn., 96, 789-800 (2019) · Zbl 1437.37083
[40] Zhang, Y. S.; Cheng, Y.; He, J. S., Riemann-Hilbert method and N-soliton for two-component Gerdjikov-Ivanov equation, J. Nonlinear Math. Phys., 24, 210-223 (2017) · Zbl 1420.35389
[41] Guo, B. L.; Tian, L. X.; Yan, Z. Y.; Ling, L. M.; Wang, Y. F., Rogue Waves: Mathematical Theory and Applications in Physics (2017), De Gruyter: De Gruyter Berlin · Zbl 1378.76002
[42] Akhmediev, N.; Ankiewicz, A.; Taki, M., Waves that appear from nowhere and disappear without a trace, Phys. Lett. A, 373, 675-678 (2009) · Zbl 1227.76010
[43] Guo, B. L.; Ling, L. M.; Liu, Q. P., Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions, Phys. Rev. E, 85, 026607 (2012)
[44] Xu, S. W.; He, J. S., The rogue wave and breather solution of the Gerdjikov-Ivanov equation, J. Math. Phys., 53, 063507 (2012) · Zbl 1288.35439
[45] Wang, X.; Li, Y. Q.; Huang, F.; Cheng, Y., Rogue wave solutions of AB system, Commun. Nonlinear Sci. Numer. Simul., 20, 434-442 (2015) · Zbl 1306.37085
[46] Mu, G.; Qin, Z. Y., Dynamic patterns of high-order rogue waves for Sasa-Satsuma equation, Nonlinear Anal. RWA, 31, 179-209 (2016) · Zbl 1345.35106
[47] Mu, G.; Qin, Z. Y.; Grimshaw, R.; Akhmediev, N., Intricate dynamics of rogue waves governed by the Sasa-Satsuma equation, Phys. D, 402, 132252 (2020) · Zbl 1453.37066
[48] Rao, J. G.; Cheng, Y.; Porsezian, K.; Mihalache, D.; He, J. S., PT-symmetric nonlocal Davey-Stewartson I equation: soliton solutions with nonzero background, Phys. D, 401, 132180 (2020) · Zbl 1453.37068
[49] Degasperis, A.; Lombardo, S., Rational solitons of wave resonant-interaction models, Phys. Rev. E, 88, 052914 (2013)
[50] Chen, J. B.; Pelinovsky, D. E., Rogue periodic waves of the focusing nonlinear Schrödinger equation, Proc. R. Soc. A, 474, 20170814 (2018) · Zbl 1402.35256
[51] Chen, J. B.; Pelinovsky, D. E.; White, R. E., Periodic standing waves in the focusing nonlinear Schrödinger equation: rogue waves and modulation instability, Phys. D, 405, 132378 (2020) · Zbl 1490.35399
[52] Feng, B. F.; Ling, L. M.; Takahashi, D. A., Multi-breather and high-order rogue waves for the nonlinear Schrödinger equation on the elliptic function background, Stud. Appl. Math., 144, 46-101 (2019) · Zbl 1454.35338
[53] Chen, J. B.; Pelinovsky, D. E.; White, R. E., Rogue waves on the double-periodic background in the focusing nonlinear Schrödinger equation, Phys. Rev. E, 100, 052219 (2019)
[54] Li, R. M.; Geng, X. G., Rogue periodic waves of the sine-Gordon equation, Appl. Math. Lett., 102, 106147 (2020) · Zbl 1440.35030
[55] Xue, B.; Shen, J.; Geng, X. G., Breathers and breather-rogue waves on a periodic background for the derivative nonlinear Schrödinger equation, Phys. Scr., 95, 055216 (2020)
[56] Ding, C. C.; Gao, Y. T.; Li, L. Q., Breathers and rogue waves on the periodic background for the Gerdjikov-Ivanov equation for the Alfvén waves in an astrophysical plasma, Chaos Solitons Fractals, 120, 259-265 (2019) · Zbl 1448.35084
[57] Du, X. X.; Tian, B.; Qu, Q. X.; Yuan, Y. Q.; Zhao, X.-H., Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma, Chaos Solitons Fractals, 134, 109709 (2020) · Zbl 1483.35177
[58] Zhao, X.; Tian, B.; Qu, Q. X.; Yuan, Y. Q.; Du, X. X.; Chu, M. X., Dark dark solitons for the coupled spatially modulated Gross-Pitaevskii system in the Bose-Einstein condensation, Mod. Phys. Lett. B, 34, 2050282 (2020)
[59] Wang, M.; Tian, B.; Sun, Y.; Zhang, Z., Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3 + 1)-dimensional nonlinear wave equation for a liquid with gas bubbles, Comput. Math. Appl., 79, 576-587 (2020) · Zbl 1443.76233
[60] Ji, T.; Zhai, Y. Y., Soliton, breather and rogue wave solutions of the coupled Gerdjikov-Ivanov equation via Darboux transformation, Nonlinear Dyn., 101, 619-631 (2020) · Zbl 1516.37115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.