×

Non-holonomic and quasi-integrable deformations of the AB equations. (English) Zbl 1508.35053

Summary: For the first time both non-holonomic and quasi-integrable deformations are obtained for the AB system of coupled equations. The AB system models geophysical and atmospheric fluid motion along with ultra-short pulse propagation in nonlinear optics, and serves as a generalization of the well-known sine-Gordon equation. The non-holonomic deformation retains integrability subjected to higher-order differential constraints whereas the quasi-AB system, which is partially deviated from integrability, is characterized by an infinite subset of quantities (charges) that are conserved only asymptotically given the solution possesses definite space-time parity properties. Particular localized solutions to both these deformations of the AB system are obtained, some of which are qualitatively unique to the corresponding deformation, displaying similarities with physically observed excitations.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q86 PDEs in connection with geophysics
35Q60 PDEs in connection with optics and electromagnetic theory
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics
78A60 Lasers, masers, optical bistability, nonlinear optics
35C05 Solutions to PDEs in closed form
35C08 Soliton solutions
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

References:

[1] Dodd, R. K.; Eilbeck, J. C.; Gibbon, J. D.; Morris, H. C., Solitons and Nonlinear Wave Equations (1982), Academic Press: Academic Press New York · Zbl 0496.35001
[2] Pedlosky, J., Finite amplitude baroclinic wave packets, J. Atmos. Sci., 29, 680-686 (1972)
[3] Gibbon, J. D.; McGuinness, M. J., Amplitude equations at the critical point of unstable dispersive physical systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 377, 185-219 (1981) · Zbl 0476.35054
[4] Wang, L.; Wang, Z. Z.; Jiang, D. Y.; Qi, F. H.; Guo, R., Semirational solutions and baseband modulational instability of the AB system in fluid mechanics, Eur. Phys. J. Plus, 130, 199 (2015)
[5] Tan, B.; Boyd, J. P., Envelope solitary waves and periodic waves in the AB equations, Stud. Appl. Math., 109, 67-87 (2002) · Zbl 1114.76315
[6] Mooney, C. J.; Swaters, G. E., Finite-amplitude baroclinic instability of a mesoscale gravity current in a channel, Geophys. Astrophys. Fluid Dyn., 82, 173-205 (1996) · Zbl 1181.76072
[7] Gibbon, J. D.; James, I. N.; Moroz, I. M., An example of soliton behaviour in a rotating baroclinic fluid, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367, 219-237 (1979) · Zbl 0423.76016
[8] Moroz, I. M.; Brindley, J., Evolution of baroclinic wave packets in a flow with continuous shear and stratification, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 377, 379-404 (1981) · Zbl 0481.76119
[9] Kamchatnov, A. M.; Pavlov, M. V., Periodic solutions and whitham equations for the AB system, J. Phys. A: Math. Gen., 28, 3279-3288 (1995) · Zbl 0830.35128
[10] Wu, C. F.; Grimshaw, R. H.J.; Chow, K. W.; Chan, H. N., A coupled AB system: Rogue waves and modulation instabilities, Chaos, 25, Article 103113 pp. (2015) · Zbl 1374.35391
[11] Guo, R.; Hao, H.-Q.; Zhang, L.-L., Dynamic behaviors of the breather solutions for the AB system in fluid mechanics, Nonlinear Dynam., 74, 701-709 (2013)
[12] Zhang, G.; Yan, Z.; Wen, X. Y., Multi-dark-dark solitons of the integrable repulsive AB system via the determinants, Chaos, 27, Article 083110 pp. (2017) · Zbl 1388.37077
[13] Yu, G. F.; Xu, Z. W.; Hu, J.; Zhao, H. Q., Bright and dark soliton solutions to the AB system and its multi-component generalization, Commun. Nonlinear Sci. Numer. Simul., 47, 178-189 (2017) · Zbl 1510.35258
[14] Wang, X.; Liu, C., W-shaped soliton complexes and rogue-wave pattern transitions for the AB system, Superlattices Microstruct., 107, 299-309 (2017)
[15] Wang, X.; Li, Y.; Huang, F.; Chen, Y., Rogue wave solutions of AB system, Commun. Nonlinear Sci. Numer. Simul., 20, 434-442 (2015) · Zbl 1306.37085
[16] Geng, X.; Shen, J.; Xue, B., Dynamical behaviour of rogue wave solutions in a multi-component AB system, Wave Motion, 89, 1-13 (2019) · Zbl 1524.35505
[17] Xie, X.-Y.; Meng, G.-Q., Multi-dark soliton solutions for a coupled AB system in the geophysical flows, App. Math. Lett., 92, 201-207 (2019) · Zbl 1412.35058
[18] Xu, Z.-W.; Yu, G.-F.; Zhu, Z.-N., Bright-dark soliton solutions of the multi-component AB system, Wave Motion, 83, 134-147 (2018) · Zbl 1469.35201
[19] Su, J.-J.; Gao, Y.-T.; Ding, C.-C., Darboux transformations and rogue wave solutions of a generalized AB system for the geophysical flows, Appl. Math. Lett., 88, 201 (2019) · Zbl 1448.76087
[20] Zhang, H.-S.; Wang, L.; Sun, W.-R.; Wang, X.; Xu, T., Mechanisms of stationary converted waves and their complexes in the multi-component AB system, Physica D, 419, Article 132849 pp. (2021) · Zbl 1508.35098
[21] Rajaraman, R., Solitons and Instantons: An Introduction To Solitons and Instantons in Quantum Field Theory (1987), North-Holland Publishing Company, Amsterdam · Zbl 0682.35090
[22] Frank, F. C.; van der Merwe, J. H., One-dimensional dislocations. I. Static theory, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 198, 205-216 (1949) · Zbl 0033.04702
[23] McLaughlin, D. W.; Scott, A. C., Perturbation analysis of fluxon dynamics, Phys. Rev. A, 18, 1652-1680 (1978)
[24] Jokela, N.; Keski-Vakkuri, E.; Majumder, J., Timelike boundary sine-Gordon theory and two-component plasma, Phys. Rev. D, 77, Article 023523 pp. (2008)
[25] Rice, M. J.; Bishop, A. R.; Krumhansl, J. A.; Trullinger, S. E., Weakly pinned Fröhlich charge-density-wave condensates: A new, nonlinear, current-carrying elementary excitation, Phys. Rev. Lett., 36, 432-435 (1976)
[26] Quintero, N. R.; Kevrekidis, P. G., Nonequivalence of phonon modes in the sine-Gordon equation, Phys. Rev. E, 64, 56608 (2001)
[27] Salerno, M., Discrete model for DNA-promoter dynamics, Phys. Rev. A, 44, 5292-5297 (1991)
[28] Gaeta, G.; Reiss, C.; Peyrard, M.; Dauxois, T., Simple models of non-linear DNA dynamics, Riv. Nuovo Cimento, 17, 1-48 (1994)
[29] Ivancevic, V. G.; Ivancevic, T., Sine-gordon solitons, kinks and breathers as physical models of nonlinear excitations in living cellular structures, J. Geom. Symmetry Phys., 31, 1-56 (2013) · Zbl 1292.82040
[30] Lamb Jr., G. L., Elements of Soliton Theory (1980), John Wiley & Sons, New York-Chichester-Brisbane-Toronto · Zbl 0445.35001
[31] Faddeev, L. D.; Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0632.58004
[32] Gu, C.; Hu, A.; Zhou, Z., Darboux Transformations in Integrable Systems (2005), Springer, Dordrecht · Zbl 1084.37054
[33] Rogers, C.; Schief, W. K., Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1019.53002
[34] Aktosun, T.; Demontis, F.; van der Mee, C., Exact solutions to the sine-Gordon equation, J. Math. Phys., 51, Article 123521 pp. (2010) · Zbl 1314.35158
[35] Filippov, A. T., Integrable 1+1 dimensional gravity models, Internat. J. Modern Phys. A, 12, 13-22 (1997) · Zbl 1073.81651
[36] Buscher, T. H., Path-integral derivation of quantum duality in nonlinear sigma-models, Phys. Lett. B, 201, 466-472 (1988)
[37] Alday, L. F.; Arutyunov, G.; Frolov, S., Green-Schwarz Strings in TsT-transformed backgrounds, J. High Energy Phys., 2006, 018 (2006)
[38] Fibich, G., The Nonlinear Schrödinger Equation (2015), Springer International Publishing, Switzerland · Zbl 0987.78018
[39] Kundu, A., Two-fold integrable hierarchy of nonholonomic deformation of the derivative nonlinear Schrödinger and the Lenells-Fokas equation, J. Math. Phys., 51, Article 022901 pp. (2010) · Zbl 1309.37060
[40] Ferreira, L. A.; Luchini, G.; Zakrzewski, W. J., The concept of quasi-integrability for modified non-linear Schrödinger models, J. High Energy Phys., 2012, 103 (2012) · Zbl 1397.81095
[41] Blas, H.; Zambrano, M., Quasi-integrability in the modified defocusing non-linear Schrödinger model and dark solitons, J. High Energy Phys., 2016, 005 (2016) · Zbl 1388.81201
[42] Blas, H.; do Bonfim, A. C.R.; Vilela, A. M., Quasi-integrable non-linear Schrödinger models, infinite towers of exactly conserved charges and bright solitons, J. High Energy Phys., 2017, 106 (2017) · Zbl 1380.81150
[43] Frenkel, E., Deformations of the KdV hierarchy and related soliton equations, Int. Math. Res. Not., 1996, 55-76 (1996) · Zbl 0860.17033
[44] Kupershmidt, B. A., KdV6: An integrable system, Phys. Lett. A, 372, 2634-2639 (2008) · Zbl 1220.35153
[45] Kundu, A., Exact accelerating solitons in non-holonomic deformation of the KdV equation with two-fold integrable hierarchy, J. Phys. A, 41, Article 495201 pp. (2008) · Zbl 1154.76013
[46] Kundu, A.; Sahadevan, R.; Nalinidevi, L., Non-holonomic deformation of KdV and mKdV equations and their symmetries, hierarchies and integrability, J. Phys. A, 42, Article 115213 pp. (2009) · Zbl 1181.35240
[47] Guha, P., Nonholonomic deformation of generalized KdV-type equations, J. Phys. A, 42, Article 345201 pp. (2009) · Zbl 1179.35286
[48] ter Braak, F.; Ferreira, L. A.; Zakrzewski, W. J., Quasi-integrability of deformations of the KdV equation, Nuclear Phys. B, 939, 49-94 (2019) · Zbl 1409.35184
[49] Blas, H.; Ochoa, R.; Suarez, D., Quasi-integrable KdV models, towers of infinite number of anomalous charges and soliton collisions, J. High Energy Phys., 2020, 136 (2020) · Zbl 1435.81091
[50] Blas, H.; Callisaya, H. F., Quasi-integrability in deformed sine-Gordon models and infinite towers of conserved charges, Commun. Nonlinear Sci. Numer. Simul., 55, 105-126 (2018) · Zbl 1448.81301
[51] Blas, H.; Callisaya, H. F.; Campos, J. P.R., Riccati-type pseudo-potentials, conservation laws and solitons of deformed sine-Gordon models, Nuclear Phys. B, 950, Article 114852 pp. (2020) · Zbl 1472.81067
[52] Barone, A.; Esposito, F.; Magee, C. J.; Scott, A. C., Theory and applications of the sine-gordon equation, La Rivista Del Nuovo Cimento, 1, 227-267 (1971)
[53] Narita, K., Deformed Sine- and Sinh-Gordon equations, deformed Liouville equations, and their discrete models, J. Phys. Soc. Japan, 72, 1339-1349 (2003) · Zbl 1059.35125
[54] Ferreira, L. A.; Zakrzewski, W. J., Breather-like structures in modified sine-Gordon models, Nonlinearity, 29, 1622-1644 (2016) · Zbl 1338.37073
[55] Karasu-Kalkani, A.; Karasu, A.; Sakovich, A.; Sakovich, S.; Turhan, R., A new integrable generalization of the Korteweg-de Vries equation, J. Math. Phys., 49, Article 073516 pp. (2008) · Zbl 1152.35473
[56] Guha, P., Nonholonomic deformation of coupled and supersymmetric KdV equations and Euler-Poincaré-Suslov method, Rev. Math. Phys., 27, Article 1550011 pp. (2015) · Zbl 1321.35199
[57] Ferreira, L. A.; Zakrzewski, W. J., The concept of quasi-integrability: A concrete example, J. High Energy Phys., 2011, 130 (2011) · Zbl 1296.81035
[58] Ferreira, L. A.; Luchini, G.; Zakrzewski, W. J., The concept of quasi-integrability, AIP Conf. Proc., 1562, 43-49 (2013)
[59] Abhinav, K.; Guha, P., Quasi-integrability in supersymmetric sine-gordon models, Europhys. Lett., 116, 10004 (2016)
[60] Abhinav, K.; Guha, P.; Mukherjee, I., Analysis and comparative study of non-holonomic and quasi-integrable deformations of the non-linear Schrödinger equation, Nonlinear Dynam., 99, 1179-1194 (2020) · Zbl 1459.35339
[61] Abhinav, K.; Guha, P.; Mukherjee, I., Study of quasi-integrable and non-holonomic deformation of equations in the NLS and DNLS hierarchy, J. Math. Phys., 59, Article 101507 pp. (2018) · Zbl 1402.35236
[62] Mukherjee, I.; Guha, P., A study of non-holonomic deformations of non-local integrable systems belonging to the non-linear Schrödinger family, Russ. J. Nonlinear Dyn., 15, 293-307 (2019) · Zbl 1440.35309
[63] Krupková, O., Mechanical systems with nonholonomic constraints, J. Math. Phys., 38, 5098-5126 (1997) · Zbl 0926.70018
[64] Abhinav, K.; Guha, P., Inhomogeneous heisenberg spin chain and quantum vortex filament as non-holonomically deformed NLS systems, Eur. Phys. J. B, 91, 52 (2018)
[65] Muller, J. C., Baroclinic instability in a two-layer, vertically semi-infinite domain, Tellus, 43, 275-284 (1991)
[66] Perring, J. K.; Skyrme, T. H.R., A model unified field equation, Nuclear Phys., 31, 550-555 (1962) · Zbl 0106.20105
[67] Noether, E., Invariante Variationsprobleme, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918, 235-257 (1918) · JFM 46.0770.01
[68] Nucci, M. C., Pseudopotentials, lax equations and Bäcklund transformations for nonlinear evolution equations, J. Phys. A: Math. Gen., 21, 73-79 (1988) · Zbl 0697.35134
[69] Nucci, M. C., Riccati-type pseudopotentials and their applications, Nonlinear Equations in the Applied Sciences (1992), Academic Press, Inc.: Academic Press, Inc. London · Zbl 0742.35062
[70] K. Abhinav, P. Guha, On Quasi-integrable Deformation Scheme of The KdV System, preprint, arXiv:2102.09881v2 [nlin.SI].
[71] Hart, J. E., A laboratory study of baroclinic instability, Geophys. Fluid Dyn., 3, 181-209 (1972)
[72] Hüttemann, H.; Hutter, K., Baroclinic solitary water waves in a two-layer fluid system with diffusive interface, Exp. Fluids, 30, 317-326 (2001)
[73] Hutter, K.; Wang, Y.; Chubarenko, I. P., Higher-order baroclinicity (I): Two fluid layers with diffuse interface - three fluid layers with sharp interfaces, chapter 15 in physics of lakes, (Advances in Geophysical and Environmental Mechanics and Mathematics, vol. 2 (2011), Springer, Berlin)
[74] Chen, C.-Y., Amplitude decay and energy dissipation due to the interaction of internal solitary waves with a triangular obstacle in a two-layer fluid system: the blockage parameter, J. Mar. Sci. Technol., 14, 499-512 (2009)
[75] Qian, M.; Chunxin, Y.; Xiaopei, L.; Xue’en, C., The investigation of internal solitary waves over a continental shelf-slope, J. Oceanol. Limnol., 38, 695-706 (2020)
[76] Zhao, Z.; Klemas, V.; Zheng, Q.; Yan, X.-H., Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea, Geophys. Res. Lett., 31, Article L06302 pp. (2004)
[77] Maderich, V.; Brovchenko, I.; Terletska, K.; Hutter, K., Numerical simulations of the nonhydrostatic transformation of basin-scale internal gravity waves and wave-enhanced meromixis in lakes, chapter 4 in hutter k. (eds), (Nonlinear Internal Waves in Lakes, Advances in Geophysical and Environmental Mechanics and Mathematics (2012), Springer, Berlin)
[78] Chen, C.-Y., An experimental study of stratified mixing caused by internal solitary waves in a two-layered fluid system over variable seabed topography, Ocean Eng., 34, 1995-2008 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.