×

Free vibration and stability of an axially moving thin circular cylindrical shell using multiple scales method. (English) Zbl 1532.74049

Summary: This paper investigates the linear free vibration of axially moving simply supported thin circular cylindrical shells with constant and time-dependent velocity considering the effect of viscous structure damping. Classical shell theory is employed to express strain-displacement relation. Linear elasticity theory is used to write stress-strain relation considering Hook’s Law. Governing equations in cylindrical coordinates are derived using the Hamilton principle. Equilibrium equations are rewritten with the help of Donnell-Mushtari shell theory simplification assumptions. Motion equations for displacements in axial and circumferential directions are solved analytically concerning to displacement in the radial direction. As the displacement in the radial direction is the combination of driven and companion modes, the third motion equation is discretized using the Galerkin method. The set of ordinary differential equation obtained from the Galerkin method is solved using the steady-state method, which in practice leads to the prediction of the exact frequencies of vibration. By employing multiple scale method the critical speed values of a circular cylindrical shell and several types of instabilities are discussed. The numerical results show that by increasing the mean velocity, the system always loses stability by the divergence instability in different modes, and the critical speed values of lower modes are higher than those of higher modes. As well as the unstable regions for the resonances between velocity function fluctuation frequencies and the linear combination of natural frequencies is gained from the solvability condition of second order multiple scale method. The accuracy of the method is checked against the available data.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K25 Shells
74S05 Finite element methods applied to problems in solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
70J25 Stability for problems in linear vibration theory
70J30 Free motions in linear vibration theory
Full Text: DOI

References:

[1] Farshidianfar, A.; Oliazadeh, P., Free vibration analysis of circular cylindrical shells: comparison of different shell theories, Int J Mech Appl, 3, 5, 74-80 (2012) · doi:10.5923/j.mechanics.20120205.04
[2] Love, AEH; Oliazadeh, P., On the small free vibration and deformation of thin elastic shell, Ohilosophical Trans R Soc A, 179, 5, 491-549 (1888) · JFM 20.1075.01 · doi:10.1098/rspl.1887.0146
[3] Liessa AW (1973) Vibration of shells, NASA SP-288, Washington DC
[4] Sharma, CB; Johns, DJ, Natural frequencies of clamped-free circular cylindrical shell, J Sound Vib, 21, 3, 317-327 (1972) · doi:10.1016/0022-460X(72)90816-4
[5] Pradhan, SC; Loy, CT; Lam, KY; Reddy, JN, Vibration characteristics of functionally graded cylindrical shells under various boundary conditions, Appl Acoust, 61, 1, 111-129 (2000) · doi:10.1016/S0003-682X(99)00063-8
[6] Amabili, M., comparision of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach, J Sound Vib, 264, 5, 1091-1125 (2003) · doi:10.1016/S0022-460X(02)01385-8
[7] Amabili, M., Nonlinear vibrations of circular cylindrical panels: Lagrangian approach, J Sound Vib, 281, 3-5, 509-535 (2005) · doi:10.1016/j.jsv.2004.01.021
[8] Amabili, M., Nonlinear vibration and stability of shells and plates (2008), Cambridge: Cambridge University Press, Cambridge · Zbl 1154.74002 · doi:10.1017/CBO9780511619694
[9] Amabili, M., Internal resonances in non-linear vibrations of a laminated circular cylindrical shell, Nonlinear Dyn, 69, 3, 755-770 (2012) · Zbl 1286.74040 · doi:10.1007/s11071-011-0302-1
[10] Du, C.; Li, Y.; Jin, X., Nonlinear forced vibration of functionally graded cylindrical thin shells, Thin Walled Struct, 78, 26-36 (2014) · doi:10.1016/j.tws.2013.12.010
[11] Alijani, F.; Amabili, M., Non-linear vibrations of shells: a literature review from 2003 to 2013, Thin Walled Struct, 58, 233-257 (2014) · doi:10.1016/j.ijnonlinmec.2013.09.012
[12] Najafov, AM; Sofiyev, AH; Kuruoglu, N., Vibration analysis of nonhomogeneous orthotropic cylindrical shells including combined effect of shear deformation and rotary inertia Vibration analysis of nonhomogeneous orthotropic cylindrical shells including combined effect of shear deformation and rotary inertia, Meccanica, 49, 2491-2502 (2014) · Zbl 1299.74082 · doi:10.1007/s11012-014-9989-7
[13] Breslavsky, ID; Amabili, M., Nonlinear vibrations of a circular cylindrical shell with multiple internal resonances under multi-harmonic excitation, Nonlinear Dyn, 93, 1, 53-62 (2018) · doi:10.1007/s11071-017-3983-2
[14] Wickert, JA, Non-linear vibration of a traveling tensioned beam, Int J Non Linear Mech, 27, 3, 503-517 (1992) · Zbl 0779.73025 · doi:10.1016/0020-7462(92)90016-Z
[15] Oz, HR; Pakdemirli, M., Vibrations of an axially moving beam with time-dependent velocity, J Sound Vib, 227, 2, 239-257 (1999) · doi:10.1006/jsvi.1999.2247
[16] Cepon, G.; Boltezar, M., Computing the dynamic response of an axially moving continuum, J Sound Vib, 300, 1-2, 316-329 (2007) · doi:10.1016/j.jsv.2006.08.014
[17] Lin, W.; Qiao, N., Vibration and stability of an axially moving beam immersed in fluid, Int J Solids Struct, 45, 5, 1445-1457 (2008) · Zbl 1169.74427 · doi:10.1016/j.ijsolstr.2007.10.015
[18] Chang, JR; Lin, WJ; Huang, CJ; Choi, ST, Vibration and stability of an axially moving Rayleigh beam, Appl Math Model, 34, 6, 1482-1497 (2010) · Zbl 1193.74075 · doi:10.1016/j.apm.2009.08.022
[19] Ghayesh, MH; Paidoussis, MP; Amabili, M., Subcritical parametric response of an axially accelerating beam, Thin Walled Struct, 60, 1-2, 185-193 (2012) · doi:10.1016/j.tws.2012.06.012
[20] Yang, T.; Fang, B.; Yang, XD; Li, Y., Closed-form approximate solution for natural frequency of axially moving beams, Int J Mech Sci, 74, 154-160 (2013) · doi:10.1016/j.ijmecsci.2013.05.010
[21] Lv, H.; Li, Y.; Li, L.; Liu, Q., Transverse vibration of viscoelastic sandwich beam with time-dependent axial tension and axially varying moving velocity, Appl Math Model, 38, 9-10, 2558-2585 (2014) · Zbl 1427.74058 · doi:10.1016/j.apm.2013.10.055
[22] Sahoo, B.; Panda, LN; Pohit, G., Two-frequency parametric excitation and internal resonance of a moving viscoelastic beam, Nonlinear Dyn, 82, 4, 1721-1742 (2015) · Zbl 1441.70009 · doi:10.1007/s11071-015-2272-1
[23] Wang, Y.; Ding, H.; Chen, LQ, Two-frequency parametric excitation and internal resonance of a moving viscoelastic beam, Int J Non Linear Mech, 99, 302-310 (2018) · doi:10.1016/j.ijnonlinmec.2017.12.013
[24] Ni, Q.; Luo, Y.; Li, M.; Yan, H., Natural frequency and stability analysis of a pipe conveying natural frequency and stability analysis of a pipe conveying, J Sound Vib, 403, 173-189 (2017) · doi:10.1016/j.jsv.2017.05.023
[25] Wang, B., Effect of rotary inertia on stability of axially accelerating viscoelastic Rayleigh beams, Appl Math Mech, 39, 5, 717-732 (2018) · Zbl 1392.74052 · doi:10.1007/s10483-018-2322-6
[26] Wang, Y.; Ding, H.; Chen, LQ, Modeling and analysis of an axially acceleration beam based on a higher order beam theory, Meccanica, 53, 10, 2525-2542 (2018) · Zbl 1397.74121 · doi:10.1007/s11012-018-0840-4
[27] Ding, H.; Li, Y.; Chen, LQ, Effects of rotary inertia on sub- and super-critical free vibration of an axially moving beam, Meccanica, 53, 13, 3233-3249 (2018) · Zbl 1532.74073 · doi:10.1007/s11012-018-0891-6
[28] Lin, CC, Stability and vibration characteristics of axially moving plates, Appl Math Mech, 34, 24, 3179-3190 (1997) · Zbl 0942.74567 · doi:10.1016/S0020-7683(96)00181-3
[29] Banichuk, N.; Jeronen, J.; Neittaanmki, P.; Saksa, T.; Tuovinen, T., Mechanics of moving materials (2014), Basel: Springer, Basel · Zbl 1287.74001 · doi:10.1007/978-3-319-01745-7
[30] Marynowski, K.; Kapitaniak, T., Dynamics of axially moving continua (review), Int J Mech Sci, 81, 26-41 (2014) · doi:10.1016/j.ijmecsci.2014.01.017
[31] Wang, L.; Hu, Z.; Zhong, Z., Dynamic analysis of an axially translating plate with time-variant length, Acta Mech, 215, 1-4, 9-23 (2010) · Zbl 1398.74158 · doi:10.1007/s00707-010-0290-0
[32] Tang, Y.; Zhang, D.; Rui, M.; Wang, X.; Zhu, D., Dynamic stability of axially accelerating viscoelastic plates with longitudinally varying tensions, Appl Math Mech, 37, 12, 1647-1668 (2016) · Zbl 1374.74086 · doi:10.1007/s10483-016-2146-8
[33] Yao, G.; Zhang, YM, Dynamics and stability of an axially moving plate interacting with surrounding airflow, Meccanica, 51, 9, 2111-2119 (2016) · Zbl 1386.74068 · doi:10.1007/s11012-016-0365-7
[34] Wang, YQ; Yang, Z., Nonlinear vibrations of moving functionally graded plates containing porosities and contacting with liquid: internal resonance, Meccanica, 90, 2, 1461-1480 (2017) · doi:10.1007/s11071-017-3739-z
[35] Wang, YQ; Liang, L.; Guo, XH, Internal resonance of axially moving laminated circular cylindrical shells, J Sound Vib, 332, 24, 6434-6450 (2013) · doi:10.1016/j.jsv.2013.07.007
[36] Xing, Y.; Liu, B.; Xu, T., Exact solutions for free vibration of circular cylindrical shells with classical boundary conditions, Int J Mech Sci, 75, 178-188 (2013) · doi:10.1016/j.ijmecsci.2013.06.005
[37] Touze, C.; Amabili, M.; Thomas, O., Reduced-order models for large-amplitude vibrations of shells including in-plane inertia, Comput Methods Appl Mech Eng, 197, 21-24, 2030-2045 (2008) · Zbl 1194.74148 · doi:10.1016/j.cma.2008.01.002
[38] Pellicano, F.; Amabili, A., Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads, Int J Solids Struct, 40, 3229-3251 (2003) · Zbl 1038.74569 · doi:10.1016/S0020-7683(03)00120-3
[39] Rawat, A.; Matsagar, V.; Nagpal, A., Finite element analysis of thin circular cylindrical shells, Proc Indian Natl Sci Acad, 82, 349-355 (2016) · doi:10.16943/ptinsa/2016/48426
[40] Ni, Q.; Luo, Y.; Li, M.; Yan, H., Natural frequency and stability analysis of a pipe conveying fluid with axially moving supports immersed in fluid, J Sound Vib, 403, 173-189 (2017) · doi:10.1016/j.jsv.2017.05.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.