×

Explicit forms of \(q\) -deformed Lévy-Meixner polynomials and their generating functions. (English) Zbl 1149.05008

Summary: The classical Lévy-Meixner polynomials are distinguished through the special forms of their generating functions. In fact, they are completely determined by 4 parameters: \(c _{1}, c _{2}, \gamma \) and \(\beta \). In this paper, for \(-1 < q < 1\), we obtain a unified explicit form of \(q\)-deformed Lévy-Meixner polynomials and their generating functions in term of \(c _{1}, c _{2}, \gamma \) and \(\beta \), which is shown to be a reasonable interpolation between classical case \((q = 1)\) and fermionic case (\(q = - 1\)). In particular, when \(q = 0\) it’s also compatible with the free case.

MSC:

05A30 \(q\)-calculus and related topics
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
46L54 Free probability and free operator algebras
Full Text: DOI

References:

[1] Koekoek, R., Swarttouw, R. F.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analuge. Tech. Report Delft Univ. Technology, 98–17, (1998)
[2] Bo\.zejko, M., Speicher, R.: An example of a generalized Brownian motion. Commun. Math. Phys., 137, 519–531 (1991) · Zbl 0722.60033 · doi:10.1007/BF02100275
[3] Voiculescu, D.: Lectures on Free Probability Theory. Lect. Notes Math., 1738, 279–349 (2000) · Zbl 1015.46037
[4] Anshelevich, M.: q-Lévy processes. J. Reine Angew. Math., 576, 181–207 (2004) · Zbl 1060.46045 · doi:10.1515/crll.2004.088
[5] Bryc, W., Wesolowski, J.: Conditional moments of q-Meixner processes. Probab. Theory Relat. Fields, 131, 415–441 (2005) · Zbl 1118.60065 · doi:10.1007/s00440-004-0379-2
[6] Meixner, J.: Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion. J. London Math. Soc., 9, 6–13 (1934) · Zbl 0008.16205 · doi:10.1112/jlms/s1-9.1.6
[7] Schoutens, W., Stochastic Processes and Orthogonal Polynomials, Lect. Notes in Statistics, 146, Springer, New York, 2000 · Zbl 0960.60076
[8] Kubo, I.: Generating functions of exponential type for orthogonal polynomials. Inf. Dim. Anal. Quantum Probab. Relat. Topics, 7, 155–159 (2004) · Zbl 1053.42027 · doi:10.1142/S0219025704001530
[9] Huang, Z. Y., Wu, Y.: Interacting Fock expansion of Lévy white noise functionals. Acta Appl. Math., 82, 333–352 (2004) · Zbl 1048.60055 · doi:10.1023/B:ACAP.0000031201.14221.fd
[10] Huang, Z. Y., Wu, Y.: Lévy white noise calculus based on interaction exponents. Acta Appl. Math., 88, 251–268 (2005) · Zbl 1081.60535 · doi:10.1007/s10440-005-9000-7
[11] Al-Salam, W., Chihara, T. S.: Convolutions of orthogonal polynomials. SIAM J. Math. Anal., 7, 16–28 (1976) · Zbl 0323.33007 · doi:10.1137/0507003
[12] Al-Salam, W., Chihara, T. S.: q-Pollaczek polynomials and a conjecture of Andrews and Askey. SIAM J. Math. Anal., 18, 228–242 (1987) · Zbl 0611.33014 · doi:10.1137/0518018
[13] Charris, J., Ismail, M. E. H.: On sieved orthogonal polynomials V: sieved Pollaczek polynomials. SIAM J. Math. Anal., 18, 1177–1218 (1987) · Zbl 0645.33018 · doi:10.1137/0518086
[14] Feinsilver, P.: Lie algebras and recurrence relations III: q-analogs and quantized algebras. Acta Appl. Math., 19, 207–251 (1990) · Zbl 0741.33015 · doi:10.1007/BF01321858
[15] Anshelevich, M.: Free martingale polynomials. J. Funct. Anal., 201, 228–261 (2003) · Zbl 1033.46050 · doi:10.1016/S0022-1236(03)00061-2
[16] Huang, Z. Y., Hu, X. S., Wang, X. J.: Explicit forms of Wick tensor powers in general white noise spaces. Intern. J. Math. Math. Sci., 31, 413–420 (2002) · Zbl 1002.60069 · doi:10.1155/S0161171202012632
[17] Gasper, G., Rahman, M., Basic Hypergeometric series, Cambridge Univ. Press, London, 1990 · Zbl 0695.33001
[18] Van Leeuwen, H., Maassen, H.: A q-deformation of Gaussian distribution. J. Math. Phys., 36, 4743–4756 (1995) · Zbl 0841.60089 · doi:10.1063/1.530917
[19] Saitoh, N., Yoshida, H.: q-deformed Poisson random variables on q-Fock space. J. Math. Phys., 41, 5767–5772 (2000) · Zbl 0971.81054 · doi:10.1063/1.533445
[20] Saitoh, N., Yoshida, H.: q-deformed Poisson distributions based on orthogonal polynomials. J. Phys. A, Math. Gen., 33, 1435–1444 (2000) · Zbl 0955.33013 · doi:10.1088/0305-4470/33/7/311
[21] Anshelevich, M.: Appell polynomials and their relatives. Inter. Math. Res. Notes, 65, 3469–3531 (2004) · Zbl 1086.33012 · doi:10.1155/S107379280413345X
[22] Nica, A.: A one-parameter family of transforms, Linearizing convolution laws for probability distributions. Commun. Math. Phys., 168, 187–207 (1995) · Zbl 0818.60096 · doi:10.1007/BF02099588
[23] Moak, D.: The q-analogue of Laguerre polynomials. J. Math. Anal. Appl., 81, 20–47 (1981) · Zbl 0459.33009 · doi:10.1016/0022-247X(81)90048-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.