×

New constructions of signed difference sets. (English) Zbl 07896624

Summary: Signed difference sets have interesting applications in communications and coding theory. A \((v,k,\lambda )\)-difference set in a finite group \(G\) of order \(v\) is a subset \(D\) of \(G\) with \(k\) distinct elements such that the expressions \(xy^{-1}\) for all distinct two elements \(x,y\in D\), represent each non-identity element in \(G\) exactly \(\lambda\) times. A \((v,k,\lambda )\)-signed difference set is a generalization of a \((v,k,\lambda )\)-difference set \(D\), which satisfies all properties of \(D\), but has a sign for each element in \(D\). We will show some new existence results for signed difference sets by using partial difference sets, product methods, and cyclotomic classes.

MSC:

05B10 Combinatorial aspects of difference sets (number-theoretic, group-theoretic, etc.)
05E10 Combinatorial aspects of representation theory
05E16 Combinatorial aspects of groups and algebras
05E30 Association schemes, strongly regular graphs

References:

[1] Arasu, K.; Hollon, JR, Group developed weighing matrices, Australas. J Comb., 55, 205-234, 2013 · Zbl 1278.05040
[2] Arasu, K.; Jungnickel, D.; Ma, SL; Pott, A., Strongly regular Cayley graphs with \(\lambda - \mu =-1\), J. Combin. Theory Ser. A, 67, 1, 116-125, 1994 · Zbl 0806.05066 · doi:10.1016/0097-3165(94)90007-8
[3] Arasu, K.; Jungnickel, D.; Pott, A., Symmetric divisible designs with \(k-\lambda_1= 1\), Discret. Math., 97, 1-3, 25-38, 1991 · Zbl 0762.05017 · doi:10.1016/0012-365X(91)90418-2
[4] Balmaceda, JMP; Estrella, BM, Difference sets from unions of cyclotomic classes of orders \(12, 20\), and \(24\), Philippine J. Sci., 150, 6, 1803-1810, 2021 · doi:10.56899/150.6B.16
[5] Brouwer A.E.: Parameters of strongly regular graphs (2019). https://www.win.tue.nl/ aeb/graphs/srg/srgtab.html.
[6] Chan, Y-K; Siu, M-K; Tong, P., Two-dimensional binary arrays with good autocorrelation, Inf. Control, 42, 2, 125-130, 1979 · Zbl 0421.05010 · doi:10.1016/S0019-9958(79)90617-X
[7] Cusick, T.; Ding, C.; Renvall, A., Stream Ciphers and Number Theory, 2005, Amsterdam: North Holland, Amsterdam
[8] Ding, C., Codes from Difference Sets, 2014, Singapore: World Scientific, Singapore · Zbl 1367.94005 · doi:10.1142/9283
[9] Golay, MJ, Notes on digital coding, Proc. IEEE, 37, 657, 1949
[10] Gordon, D.M.: La Jolla Combinatorics Repository (2022). https://www.dmgordon.org.
[11] Gordon, DM, Signed difference sets, Des. Codes Cryptogr., 91, 5, 2107-2115, 2023 · Zbl 1512.05059 · doi:10.1007/s10623-022-01171-8
[12] Hall, M., A survey of difference sets, Proc. Am. Math. Soc., 7, 6, 975-986, 1956 · Zbl 0077.05202 · doi:10.1090/S0002-9939-1956-0082502-7
[13] Helleseth, T.; Gong, G., New nonbinary sequences with ideal two-level autocorrelation, IEEE Trans. Inf. Theory, 48, 11, 2868-2872, 2002 · Zbl 1062.94033 · doi:10.1109/TIT.2002.804052
[14] Katre, S.; Rajwade, A., Resolution of the sign ambiguity in the determination of the cyclotomic numbers of order \(4\) and the corresponding Jacobsthal sum, Math. Scand., 60, 52-62, 1987 · Zbl 0602.12005 · doi:10.7146/math.scand.a-12171
[15] Ko, H-P; Ray-Chaudhuri, DK, Multiplier theorems, J. Combin. Theory Ser. A, 30, 2, 134-157, 1981 · Zbl 0479.05014 · doi:10.1016/0097-3165(81)90002-9
[16] Lebesgue, VA, Sur l’impossibilité en nombres entiers de l’équation \(x^m=y^2+ 1\), Nouvelles Ann. Math., 9, 9, 178-181, 1850
[17] Lehmer, E., On residue difference sets, Can. J. Math., 5, 425-432, 1953 · Zbl 0052.03904 · doi:10.4153/CJM-1953-047-3
[18] Leung, KH; Schmidt, B., Structure of group invariant weighing matrices of small weight, J. Combin. Theory Ser. A, 154, 114-128, 2018 · Zbl 1373.05033 · doi:10.1016/j.jcta.2017.08.016
[19] Liu, Z.; Guan, YL; Parampalli, U.; Hu, S., Spectrally-constrained sequences: bounds and constructions, IEEE Trans. Inf. Theory, 64, 4, 2571-2582, 2018 · Zbl 1390.94816 · doi:10.1109/TIT.2018.2800012
[20] Ma, S., Partial difference sets, Discret. Math., 52, 1, 75-89, 1984 · Zbl 0548.05012 · doi:10.1016/0012-365X(84)90105-5
[21] Ma, SL, A survey of partial difference sets, Des. Codes Cryptogr., 4, 4, 221-261, 1994 · Zbl 0798.05008 · doi:10.1007/BF01388454
[22] Paley, RE, On orthogonal matrices, J. Math. Phys., 12, 1-4, 311-320, 1933 · Zbl 0007.10004 · doi:10.1002/sapm1933121311
[23] Polhill, J., Paley partial difference sets in groups of order \(n^4\) and \(9n^4\) for any odd \(n>1\), J. Combin. Theory Ser. A, 117, 8, 1027-1036, 2010 · Zbl 1231.05030 · doi:10.1016/j.jcta.2010.02.008
[24] Tan, MM, Group invariant weighing matrices, Des. Codes Cryptogr., 86, 2677-2702, 2018 · Zbl 1398.05047 · doi:10.1007/s10623-018-0466-5
[25] Tao, R.; Feng, T.; Li, W., A construction of minimal linear codes from partial difference sets, IEEE Trans. Inf. Theory, 67, 6, 3724-3734, 2021 · Zbl 1474.94082 · doi:10.1109/TIT.2021.3067049
[26] Tsai, L-S; Chung, W-H; Shiu, D-S, Synthesizing low autocorrelation and low PAPR OFDM sequences under spectral constraints through convex optimization and GS algorithm, IEEE Trans. Signal Process., 59, 5, 2234-2243, 2011 · Zbl 1392.94492 · doi:10.1109/TSP.2011.2108652
[27] Wang, Z., Paley type partial difference sets in abelian groups, J. Combin. Des., 28, 2, 149-152, 2020 · Zbl 1536.05079 · doi:10.1002/jcd.21691
[28] Wang, Z.; Gong, G., Constructions of complementary sequence sets and complete complementary codes by ideal two-level autocorrelation sequences and permutation polynomials, IEEE Trans. Inf. Theory, 2023 · Zbl 1542.94096 · doi:10.1109/TIT.2023.3258180
[29] Xiang, Q., On balanced binary sequences with two-level autocorrelation functions, IEEE Trans. Inf. Theory, 44, 7, 3153-3156, 1998 · Zbl 0932.94028 · doi:10.1109/18.737547
[30] Ye, Z.; Zhou, Z.; Liu, Z.; Tang, X.; Fan, P., New spectrally constrained sequence sets with optimal periodic cross-correlation, IEEE Trans. Inf. Theory, 69, 1, 610-625, 2022 · Zbl 1534.94076 · doi:10.1109/TIT.2022.3205380
[31] Ye, Z.; Zhou, Z.; Zhang, S.; Tang, X., Optimal ternary sequence sets rigorously achieving the Welch bound, Sci Sin Math, 53, 1-12, 2023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.