×

Generating multi-photon W-like states for perfect quantum teleportation and superdense coding. (English) Zbl 1348.81094

Summary: An interesting aspect of multipartite entanglement is that for perfect teleportation and superdense coding, not the maximally entangled W states but a special class of non-maximally entangled W-like states are required. Therefore, efficient preparation of such W-like states is of great importance in quantum communications, which has not been studied as much as the preparation of W states. In this paper, we propose a simple optical scheme for efficient preparation of large-scale polarization-based entangled W-like states by fusing two W-like states or expanding a W-like state with an ancilla photon. Our scheme can also generate large-scale W states by fusing or expanding W or even W-like states. The cost analysis shows that in generating large-scale W states, the fusion mechanism achieves a higher efficiency with non-maximally entangled W-like states than maximally entangled W states. Our scheme can also start fusion or expansion with Bell states, and it is composed of a polarization-dependent beam splitter, two polarizing beam splitters and photon detectors. Requiring no ancilla photon or controlled gate to operate, our scheme can be realized with the current photonics technology and we believe it enable advances in quantum teleportation and superdense coding in multipartite settings.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81V80 Quantum optics
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P15 Quantum measurement theory, state operations, state preparations

References:

[1] Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wooters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895-1899 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[2] Bennett, C.H., Wiesner, S.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881-2884 (1992) · Zbl 0968.81506 · doi:10.1103/PhysRevLett.69.2881
[3] Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(11), 575-579 (1997) · Zbl 1369.81006 · doi:10.1038/37539
[4] Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82(3), 032318 (2010) · doi:10.1103/PhysRevA.82.032318
[5] Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518(7540), 516-519 (2015) · doi:10.1038/nature14246
[6] Zeng, B., Liu, X.S., Li, Y.S., Long, G.L.: High-dimensional multi-particle cat-like state teleportation. Commun. Theor. Phys. 38(5), 537-540 (2002) · Zbl 1267.81082 · doi:10.1088/0253-6102/38/5/537
[7] Shang, T., Du, G., Liu, J.W.: Opportunistic quantum network coding based on quantum teleportation. Quantum Inf. Process. 15(4), 1743-1763 (2016) · Zbl 1338.81109 · doi:10.1007/s11128-015-1219-2
[8] Kao, S.H., Chen, Y.T., Tsai, ChW, Hwang, T.: Multi-controller quantum teleportation with remote rotation and its applications. Quantum Inf. Process. 14(12), 4615-4629 (2015) · Zbl 1333.81078 · doi:10.1007/s11128-015-1154-2
[9] Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65(2), 022304 (2002) · doi:10.1103/PhysRevA.65.022304
[10] Agrawal, P., Pati, A.K.: Probabilistic quantum teleportation. Phys. Lett. A 305(1-2), 12-17 (2002) · Zbl 1001.81003 · doi:10.1016/S0375-9601(02)01383-X
[11] Pati, A.K., Agrawal, P.: Probabilistic teleportation and quantum operation. J. Opt. B Quantum Semiclass. Opt. 6(8), S844-S848 (2004) · doi:10.1088/1464-4266/6/8/034
[12] Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M., Wootters, W.K.: Classical information capacity of a quantum channel. Phys. Rev. A 54(3), 1869-1876 (1996) · doi:10.1103/PhysRevA.54.1869
[13] Hao, J.C., Li, C.F., Guo, G.C.: Probabilistic dense coding and teleportation. Phys. Lett. A 278(3), 113-117 (2000) · doi:10.1016/S0375-9601(00)00764-7
[14] Pati, A.K., Parashar, P., Agrawal, P.: Probabilistic superdense coding. Phys. Rev. A 72(1), 012329 (2005) · doi:10.1103/PhysRevA.72.012329
[15] Bennett, C.H., Popescu, S., Rohrlich, D., Smolin, J.A., Thapliyal, A.V.: Exact and asymptotic measures of multipartite pure-state entanglement. Phys. Rev. A 63(1), 012307 (2000) · doi:10.1103/PhysRevA.63.012307
[16] Yu, N., Guo, C., Duan, R.: Obtaining a W state from a Greenberger-Horne-Zeilinger state via stochastic local operations and classical communication with a rate approaching unity. Phys. Rev. Lett. 112(16), 160401 (2014) · doi:10.1103/PhysRevLett.112.160401
[17] Vrana, P., Christandl, M., Math, J.: Asymptotic entanglement transformation between W and GHZ states. J. Math. Phys. 56(2), 022204 (2015) · Zbl 1345.81015 · doi:10.1063/1.4908106
[18] D’Hondt, E., Panangaden, P.: The computational power of the W and GHZ states. Quantum Inf. Comput. 6(2), 173-183 (2006) · Zbl 1152.81703
[19] Tashima, T., Ozdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Local expansion of photonic W state using a polarization-dependent beamsplitter. New J. Phys. 11(2), 023024 (2009) · Zbl 1191.81040 · doi:10.1088/1367-2630/11/2/023024
[20] Ozdemir, S.K., Matsunaga, E., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: An optical fusion gate for W-states. New J. Phys. 13(10), 103003 (2011) · doi:10.1088/1367-2630/13/10/103003
[21] Xu, W.H., Zhao, X., Long, G.L.: Efficient generation of multi-photon W states by joint-measurement. Prog. Nat. Sci. 18(1), 119-122 (2008) · doi:10.1016/j.pnsc.2007.05.001
[22] Huang, X.B., Zhong, Z.R., Chen, Y.H.: Generation of multi-atom entangled states in coupled cavities via transitionless quantum driving. Quantum Inf. Process. 14(12), 4475-4492 (2015) · Zbl 1333.81030 · doi:10.1007/s11128-015-1138-2
[23] Luo, M.X., Deng, Y., Li, H.R., Wang, X.J.: Generations of N-atom GHZ state and \[2^n\] n-atom W state assisted by quantum dots in optical microcavities. Quantum Inf. Process. 14(10), 3661-3676 (2015) · Zbl 1327.81053 · doi:10.1007/s11128-015-1087-9
[24] Hu, J.R., Lin, Q.: W state generation by adding independent single photons. Quantum Inf. Process. 14(8), 2847-2860 (2015) · Zbl 1327.81044 · doi:10.1007/s11128-015-1030-0
[25] Wu, Y.L., Li, S.J., Ge, W., Xu, Z.X., Tian, L., Wang, H.: Generation of polarization-entangled photon pairs in a cold atomic ensemble. Sci. Bull. 61(4), 302-306 (2016) · doi:10.1007/s11434-015-0985-7
[26] Li, T.C., Yin, Z.Q.: Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci. Bull. 61(2), 163-171 (2016) · doi:10.1007/s11434-015-0990-x
[27] Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China Phys. Mech. Astron. 58(6), 60301-060301 (2015) · doi:10.1007/s11433-015-5672-9
[28] Heilmann, R., Gräfe, M., Nolte, S., Szameit, A.: A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci. Bull. 60(1), 96-100 (2015) · doi:10.1007/s11434-014-0688-5
[29] Flamini, F., Magrini, L., Rab, A.S., Spagnolo, N., D’Ambrosio, V., Mataloni, P., Sciarrino, F., Zandrini, T., Crespi, A., Ramponi, R., Osellame, R.: Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining. Light Sci. Appl. 4(20), e354 (2015) · doi:10.1038/lsa.2015.127
[30] Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states. Quantum Inf. Process. 14(6), 2077-2099 (2015) · Zbl 1317.81037 · doi:10.1007/s11128-015-0948-6
[31] Chen, A.X., Deng, L.: Scheme for generation of W and W-like states of nonidentical particles and their application in teleportation. Quantum Inf. Process. 6(4), 221-228 (2007) · Zbl 1134.81326 · doi:10.1007/s11128-007-0054-5
[32] Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000) · doi:10.1103/PhysRevA.62.062314
[33] Dür, W.: Multipartite entanglement that is robust against disposal of particles. Phys. Rev. A 63(2), 020303(R) (2001) · doi:10.1103/PhysRevA.63.020303
[34] Greenberger, D.M., Horne, M., Shimony, A., Zeilinger, A.: Bells theorem without inequalities. Am. J. Phys. 58(12), 1131-1143 (1990) · Zbl 0948.81511 · doi:10.1119/1.16243
[35] Yesilyurt, C., Bugu, S., Ozaydin, F.: An optical gate for simultaneous fusion of four photonic W or Bell states. Quantum Inf. Process. 12(9), 2965-2975 (2013) · Zbl 1273.81042 · doi:10.1007/s11128-013-0578-9
[36] Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the W-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A 87(3), 032331 (2013) · doi:10.1103/PhysRevA.87.032331
[37] Ozaydin, F., Bugu, S., Yesilyurt, C., Altintas, A.A., Tame, M., Ozdemir, S.K.: Fusing multiple W states simultaneously with a Fredkin gate. Phys. Rev. A 89(4), 042311 (2014) · doi:10.1103/PhysRevA.89.042311
[38] Ozaydin, F.: Phase damping destroys quantum Fisher information of W states. Phys. Lett. A 378(43), 3161-3164 (2014) · Zbl 1343.81053 · doi:10.1016/j.physleta.2014.08.035
[39] Ozaydin, F., Yesilyurt, C., Altintas, A.A., Bugu, S., Erol, V.: Quantum Fisher information of bipartitions of W states. Acta Phys. Polon. A 127(4), 1233-1235 (2015) · doi:10.12693/APhysPolA.127.1233
[40] Yesilyurt, C., Bugu, S., Diker, F., Altintas, A.A., Ozay din, F.: An optical setup for deterministic creation of four partite W state. Acta Phys. Polon. A 127(4), 1230-1232 (2015) · doi:10.12693/APhysPolA.127.1230
[41] Zang, X.P., Yang, M., Ozaydin, F., Song, W., Cao, Z.L.: Generating multi-atom entangled W states via light-matter interface based fusion mechanism. Sci. Rep. 5, 16245 (2015) · doi:10.1038/srep16245
[42] Dag, C. B., Mustecaplioglu, O. E.: Classification of quantum coherences for quantum thermalization. arXiv:1507.08136 (2015)
[43] Yesilyurt, C.: Deterministic Local Expansion of W States. arXiv:1602.04166 (2016)
[44] Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85(4), 042302 (2012) · doi:10.1103/PhysRevA.85.042302
[45] Sheng, Y.B., Zhou, L.: Efficient W-state entanglement concentration using quantum-dot and optical microcavities. J. Opt. Soc. Am. B 30(3), 678-686 (2013) · doi:10.1364/JOSAB.30.000678
[46] Zang, X.P., Yang, M., Song, W., Cao, Z.L.: Fusion of entangled coherent W and GHZ states in cavity QED. Opt. Commun. 370, 168-171 (2016) · doi:10.1016/j.optcom.2016.03.014
[47] Gorbachev, V.N., Rodichkina, A.A., Trubilko, A.I.: On preparation of the entangled W-states from atomic ensembles. Phys. Lett. A 310(5-6), 339-343 (2003) · Zbl 1098.81736 · doi:10.1016/S0375-9601(03)00404-3
[48] Joo, J., Park, Y.J., Oh, S., Kim, J.: Quantum teleportation via a W state. New J. Phys. 5(1), 136 (2003) · doi:10.1088/1367-2630/5/1/136
[49] Agrawal, P., Pati, A.K.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74(6), 062320 (2006) · doi:10.1103/PhysRevA.74.062320
[50] Gorbachev, V.N., Trubilko, A.I., Rodichkina, A.A., Zhiliba, A.I.: Can the states of the W-class be suitable for teleportation? Phys. Lett. A 314(4), 267-271 (2003) · Zbl 1073.81550 · doi:10.1016/S0375-9601(03)00906-X
[51] Li, L.Z., Qiu, D.W.: The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A Math. Theor. 40(35), 10871-10885 (2007) · Zbl 1123.81329 · doi:10.1088/1751-8113/40/35/010
[52] Li, K., Yang, M., Yang, Q., Cao, Z.L.: Fusion of W-like states in optical system. Laser Phys. 26(2), 025203 (2016) · doi:10.1088/1054-660X/26/2/025203
[53] Tashima, T., Wakatsuki, T., Ozdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W state. Phys. Rev. Lett. 102(13), 130502 (2009) · Zbl 1191.81040 · doi:10.1103/PhysRevLett.102.130502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.