×

Material and morphology parameter sensitivity analysis in particulate composite materials. (English) Zbl 1446.74082

Summary: This manuscript presents a novel parameter sensitivity analysis framework for damage and failure modeling of particulate composite materials subjected to dynamic loading. The proposed framework employs global sensitivity analysis to study the variance in the failure response as a function of model parameters. In view of the computational complexity of performing thousands of detailed microstructural simulations to characterize sensitivities, Gaussian process (GP) surrogate modeling is incorporated into the framework. In order to capture the discontinuity in response surfaces, the GP models are integrated with a support vector machine classification algorithm that identifies the discontinuities within response surfaces. The proposed framework is employed to quantify variability and sensitivities in the failure response of polymer bonded particulate energetic materials under dynamic loads to material properties and morphological parameters that define the material microstructure. Particular emphasis is placed on the identification of sensitivity to interfaces between the polymer binder and the energetic particles. The proposed framework has been demonstrated to identify the most consequential material and morphological parameters under vibrational and impact loads.

MSC:

74A45 Theories of fracture and damage
74A40 Random materials and composite materials
74A50 Structured surfaces and interfaces, coexistent phases

Software:

Silhouettes; Neper
Full Text: DOI

References:

[1] Barua, A; Zhou, M, A Lagrangian framework for analyzing microstructural level response of polymer-bonded explosives, Model Simul Mater Sci Eng, 19, 055001, (2011) · doi:10.1088/0965-0393/19/5/055001
[2] Barua, A; Kim, S; Horie, Y; Zhou, M, Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold, J Appl Phys, 113, 064906, (2013) · doi:10.1063/1.4792001
[3] Bowden FP, Yoffe AD (1952) Initiation and growth of explosion in liquids and solids. CUP Archive, Cambridge
[4] Cady, CM; Blumenthal, WR; Gray, GT; Idar, DJ, Mechanical properties of plastic-bonded explosive binder materials as a function of strain-rate and temperature, Polym Eng Sci, 46, 812-819, (2006) · doi:10.1002/pen.20540
[5] Chatterjee S, Hadi AS (2009) Sensitivity analysis in linear regression, vol 327. Wiley, Hoboken · Zbl 0648.62066
[6] Christopher Frey, H; Patil, SR, Identification and review of sensitivity analysis methods, Risk Anal, 22, 553-578, (2002) · doi:10.1111/0272-4332.00039
[7] Cortes, C; Vapnik, V, Support-vector networks, Mach Learn, 20, 273-297, (1995) · Zbl 0831.68098
[8] Cristianini N, Taylor JS (2000) An introduction to support vector machines. Cambridge University Press, Cambridge · Zbl 0994.68074
[9] Czerski, H; Proud, WG, Relationship between the morphology of granular cyclotrimethylene-trinitramine and its shock sensitivity, J Appl Phys, 102, 113515, (2007) · doi:10.1063/1.2818106
[10] Delannay, L; Jacques, PJ; Kalidindi, SR, Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons, Int J Plast, 22, 1879-1898, (2006) · Zbl 1136.74375 · doi:10.1016/j.ijplas.2006.01.008
[11] Elices, M; Guinea, GV; Gomez, J; Planas, J, The cohesive zone model: advantages, limitations and challenges, Eng Fract Mech, 69, 137-163, (2002) · doi:10.1016/S0013-7944(01)00083-2
[12] Field, JE, Hot spot ignition mechanisms for explosives, Acc Chem Res, 25, 489-496, (1992) · doi:10.1021/ar00023a002
[13] Hackeling G (2014) Mastering machine learning with scikit-learn. Packt Publishing Ltd, Birmingham
[14] Han, B; Ju, Y; Zhou, C, Simulation of crack propagation in HTPB propellant using cohesive zone model, Eng Fail Anal, 26, 304-317, (2012) · doi:10.1016/j.engfailanal.2012.05.025
[15] Hanson-Parr, DM; Parr, TP, Thermal properties measurements of solid rocket propellant oxidizers and binder materials as a function of temperature, J Energ Mater, 17, 1-48, (1999) · doi:10.1080/07370659908216094
[16] Herbold, EB; Nesterenko, VF; Benson, DJ; Cai, J; Vecchio, KS; Jiang, F; Addiss, JW; Walley, SM; Proud, WG, Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-al-w granular composite materials, J Appl Phys, 104, 103903, (2008) · doi:10.1063/1.3000631
[17] Homma, T; Saltelli, A, Importance measures in global sensitivity analysis of nonlinear models, Reliab Eng Syst Saf, 52, 1-17, (1996) · doi:10.1016/0951-8320(96)00002-6
[18] Hsiao, S-W; Kikuchi, N, Numerical analysis and optimal design of composite thermoforming process, Comput Methods Appl Mech Eng, 177, 1-34, (1999) · Zbl 0972.74019
[19] Hu, R; Prakash, C; Tomar, V; Harr, M; Gunduz, IE; Oskay, C, Experimentally-validated mesoscale modeling of the coupled mechanical-thermal response of AP-HTPB energetic material under dynamic loading, Int J Fract, 203, 277-298, (2017) · doi:10.1007/s10704-016-0141-7
[20] Hudson, RJ; Moniruzzaman, M; Gill, PP, Investigation of crystal morphology and shock sensitivity of cyclotrimethylenetrinitramine suspension by rheology, Propellants Explos Pyrotech, 40, 233-237, (2015) · doi:10.1002/prep.201400129
[21] Iman, RL; Helton, JC, An investigation of uncertainty and sensitivity analysis techniques for computer models, Risk Anal, 8, 71-90, (1988) · doi:10.1111/j.1539-6924.1988.tb01155.x
[22] Inoue, M; Hirasawa, I, The relationship between crystal morphology and XRD peak intensity on \(\text{CaSO}_4· \text{2H }_2\text{ O }\), J Cryst Growth, 380, 169-175, (2013) · doi:10.1016/j.jcrysgro.2013.06.017
[23] Jackson, TL; Hooks, DE; Buckmaster, J, Modeling the microstructure of energetic materials with realistic constituent morphology, Propellants Explos Pyrotech, 36, 252-258, (2011) · doi:10.1002/prep.201000096
[24] Kohavi R, et al (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Ijcai, vol 14. Stanford, CA, pp 1137-1145
[25] Kotsiantis, SB; Zaharakis, I; Pintelas, P, Supervised machine learning: a review of classification techniques, Informatica, 31, 249-268, (2007) · Zbl 1162.68552
[26] Kozyrev, NV; Larionov, BV; Sakovich, GV, Influence of HMX particle size on the synthesis of nanodiamonds in detonation waves, Combust Explos Shock Waves, 44, 193-197, (2008) · doi:10.1007/s10573-008-0026-9
[27] Li, G; Rabitz, H; Yelvington, PE; Oluwole, OO; Bacon, F; Kolb, CE; Schoendorf, J, Global sensitivity analysis for systems with independent and/or correlated inputs, J Phys Chem A, 114, 6022-6032, (2010) · doi:10.1021/jp9096919
[28] Lucca, DA; Klopfstein, MJ; Mejia, OR; Rossettini, L; DeLuca, LT, Investigation of ammonium perchlorate by nanoindentation, Mater Sci Technol, 22, 396-401, (2006) · doi:10.1179/174328406X83996
[29] Miller, JK; Mares, JO; Gunduz, IE; Son, SF; Rhoads, JF, The impact of crystal morphology on the thermal responses of ultrasonically-excited energetic materials, J Appl Phys, 119, 024903, (2016) · doi:10.1063/1.4939812
[30] Morris, MD, Factorial sampling plans for preliminary computational experiments, Technometrics, 33, 161-174, (1991) · doi:10.1080/00401706.1991.10484804
[31] Mulrow EJ (2002) The visual display of quantitative information. Taylor & Francis, London
[32] Neyman, J, On the two different aspects of the representative method: the method of stratified sampling and the method of purposive selection, J R Stat Soc, 97, 558-625, (1934) · Zbl 0010.07201 · doi:10.2307/2342192
[33] Panchadhara, R; Gonthier, KA, Mesoscale analysis of volumetric and surface dissipation in granular explosive induced by uniaxial deformation waves, Shock Waves, 21, 43-61, (2011) · doi:10.1007/s00193-010-0287-6
[34] Pelleg, D; Moore, AW, X-means: extending k-means with efficient estimation of the number of clusters, ICML, 1, 727-734, (2000)
[35] Prakash C, Verma D, Exner M, Gunduz E, Tomar V (2017) Strain rate dependent failure of interfaces examined via nanoimpact experiments. In: Challenges in mechanics of time dependent materials, vol 2. Springer, pp 93-102
[36] Quey, R; Dawson, PR; Barbe, F, Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing, Comput Methods Appl Mech Eng, 200, 1729-1745, (2011) · Zbl 1228.74093 · doi:10.1016/j.cma.2011.01.002
[37] Rabitz, H; Kramer, M; Dacol, D, Sensitivity analysis in chemical kinetics, Annu Rev Phys Chem, 34, 419-461, (1983) · doi:10.1146/annurev.pc.34.100183.002223
[38] Rae, PJ; Goldrein, HT; Palmer, SJP; Field, JE; Lewis, AL, Quasi-static studies of the deformation and failure of \({\upbeta }\)-HMX based polymer bonded explosives, Proc R Soc Lond A Math Phys Eng Sci, 458, 743-762, (2002) · doi:10.1098/rspa.2001.0894
[39] Rohan, E; Miara, B, Homogenization and shape sensitivity of microstructures for design of piezoelectric bio-materials, Mech Adv Mater Struct, 13, 473-485, (2006) · doi:10.1080/15376490600862848
[40] Rousseeuw, PJ, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, J Comput Appl Math, 20, 53-65, (1987) · Zbl 0636.62059 · doi:10.1016/0377-0427(87)90125-7
[41] Sakamoto Y (1988) Akaike Information Criterion Statistics. Taylor & Francis, 907 pp
[42] Saltelli, A; Annoni, P, How to avoid a perfunctory sensitivity analysis, Environ Model Softw, 25, 1508-1517, (2010) · doi:10.1016/j.envsoft.2010.04.012
[43] Saltelli A, Chan K, Scott EM et al (2000) Sensitivity analysis, vol 1. Wiley, New York · Zbl 0961.62091
[44] Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. Wiley, Hoboken · Zbl 1161.00304
[45] Schneider, F; Fellner, T; Wilde, J; Wallrabe, U, Mechanical properties of silicones for MEMS, J Micromech Microeng, 18, 065008, (2008) · doi:10.1088/0960-1317/18/6/065008
[46] Scholkopf, B; Mika, S; Burges, CJC; Knirsch, P; Muller, K-R; Ratsch, G; Smola, AJ, Input space versus feature space in kernel-based methods, IEEE Trans Neural Netw, 10, 1000-1017, (1999) · doi:10.1109/72.788641
[47] Seuntjens, P; Mallants, D; Šimůnek, J; Patyn, J; Jacques, D, Sensitivity analysis of physical and chemical properties affecting field-scale cadmium transport in a heterogeneous soil profile, J Hydrol, 264, 185-200, (2002) · doi:10.1016/S0022-1694(02)00071-9
[48] Sobol, IM, Sensitivity estimates for nonlinear mathematical models, Math Model Comput Exp, 1, 407-414, (1993) · Zbl 1039.65505
[49] Sobol’, IYM, On the distribution of points in a cube and the approximate evaluation of integrals, Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7, 784-802, (1967)
[50] Song, SH; Paulino, GH; Buttlar, WG, A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material, Eng Fract Mech, 73, 2829-2848, (2006) · doi:10.1016/j.engfracmech.2006.04.030
[51] Stein ML (2012) Interpolation of spatial data: some theory for kriging. Springer, Berlin
[52] Studer, V; Hang, G; Pandolfi, A; Ortiz, M; Anderson, WF; Quake, SR, Scaling properties of a low-actuation pressure microfluidic valve, J Appl Phys, 95, 393-398, (2004) · doi:10.1063/1.1629781
[53] Suykens, JAK; Vandewalle, J, Least squares support vector machine classifiers, Neural Process Lett, 9, 293-300, (1999) · doi:10.1023/A:1018628609742
[54] Taylor, BC; Stott, JL; Thurmond, MA; Picanso, JP, Alteration in lymphocyte subpopulations in bovine leukosis virus-infected cattle, Vet Immunol Immunopathol, 31, 35-47, (1992) · doi:10.1016/0165-2427(92)90085-5
[55] Teipel U (2006) Energetic materials: particle processing and characterization. Wiley, Hoboken
[56] Tvergaard, V; Hutchinson, JW, The influence of plasticity on mixed mode interface toughness, J Mech Phys Solids, 41, 1119-1135, (1993) · Zbl 0775.73219 · doi:10.1016/0022-5096(93)90057-M
[57] Wadell, H, Volume, shape, and roundness of quartz particles, J Geol, 43, 250-280, (1935) · doi:10.1086/624298
[58] Walley, SM; Field, JE; Greenaway, MW, Crystal sensitivities of energetic materials, Mater Sci Technol, 22, 402-413, (2006) · doi:10.1179/174328406X91122
[59] Walters DJ, Luscher DJ, Manner V, Yeager JD, Patterson BM (2017) Investigating deformation and mesoscale void creation in hmx based composites using tomography based grain scale finite element modeling. Bull Am Phys Soc 62(9)
[60] Wang, D-X; Chen, S-S; Li, Y-Y; Yang, J-Y; Wei, T-Y; Jin, S-H, An investigation into the effects of additives on crystal characteristics and impact sensitivity of RDX, J Energ Mater, 32, 184-198, (2014) · doi:10.1080/07370652.2013.812160
[61] Wang, X; Wu, Y; Huang, F; Jiao, T; Clifton, RJ, Mesoscale thermal-mechanical analysis of impacted granular and polymer-bonded explosives, Mech Mater, 99, 68-78, (2016) · doi:10.1016/j.mechmat.2016.05.004
[62] Wu, Y-Q; Huang, F-L, A micromechanical model for predicting combined damage of particles and interface debonding in PBX explosives, Mech Mater, 41, 27-47, (2009) · doi:10.1016/j.mechmat.2008.07.005
[63] Yu, M; Zhu, P; Ma, Y, Global sensitivity analysis for the elastic properties of hollow spheres filled syntactic foams using high dimensional model representation method, Comput Mater Sci, 61, 89-98, (2012) · doi:10.1016/j.commatsci.2012.04.005
[64] Zhou, Z; Chen, P; Huang, F; Liu, S, Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method, Opt Lasers Eng, 49, 366-370, (2011) · doi:10.1016/j.optlaseng.2010.11.001
[65] Zohdi, TI, Modeling and simulation of laser processing of particulate-functionalized materials, Arch Comput Methods Eng, 24, 89-113, (2017) · Zbl 1360.74126 · doi:10.1007/s11831-015-9160-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.