×

stella: an operator-split, implicit-explicit \(\delta f\)-gyrokinetic code for general magnetic field configurations. (English) Zbl 1452.76281

Summary: Here we present details of an operator-split, implicit-explicit numerical scheme for the solution of the gyrokinetic-Poisson system of equations in the local limit. This scheme has been implemented in a new code called stella, which is capable of evolving electrostatic fluctuations with full kinetic electron effects and an arbitrary number of ion species in general magnetic geometry. We demonstrate the advantages of this mixed approach over a fully explicit treatment and provide linear and nonlinear benchmark comparisons for both axisymmetric and non-axisymmetric magnetic equilibria.

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76M20 Finite difference methods applied to problems in fluid mechanics

Software:

GKW; ORB5; gs2; stella; AstroGK

References:

[1] Catto, P. J., Linearized gyro-kinetics, Plasma Phys., 20, 719 (1978)
[2] Frieman, E. A.; Chen, L., Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria, Phys. Fluids, 25, 502 (1982) · Zbl 0506.76133
[3] Parker, S. E.; Lee, W. W.; Santoro, R. A., Gyrokinetic simulation of ion temperature gradient driven turbulence in 3D toroidal geometry, Phys. Rev. Lett., 71, 2042 (1993)
[4] Kotschenreuther, M.; Rewoldt, G.; Tang, W. M., Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities, Comput. Phys. Commun., 88, 128-140 (1995) · Zbl 0923.76198
[5] Lin, Z.; Hahm, T. S.; Lee, W. W.; Tang, W. M.; White, R. B., Turbulent transport reduction by zonal flows: massively parallel simulations, Science, 281, 1835 (1998)
[6] Jenko, F., Massively parallel Vlasov simulation of electromagnetic drift-wave turbulence, Comput. Phys. Commun., 125, 196 (2000) · Zbl 0969.76099
[7] Jost, G.; Tran, T. M.; Cooper, W.; Appert, K., Global linear gyrokinetic simulations in quasi-symmetric configurations, Phys. Plasmas, 8, 3321 (2001)
[8] Candy, J.; Waltz, R. E., An Eulerian gyrokinetic-Maxwell solver, J. Comput. Phys., 186, 545 (2003) · Zbl 1072.82554
[9] Idomura, Y.; Tokuda, S.; Kishimoto, Y., Global gyrokinetic simulation of ion temperature gradient driven turbulence in plasmas using a canonical Maxwellian distribution, Nucl. Fusion, 43, 234 (2003)
[10] Watanabe, T.-H.; Sugama, H., Velocity-space structures of distribution function in toroidal ion temperature gradient turbulence, Nucl. Fusion, 46, 24 (2006)
[11] Jolliet, S.; Bottino, A.; Angelino, P.; Hatzky, R.; Tran, T. M.; McMillan, B. F.; Sauter, O.; Appert, K.; Idomura, Y.; Villard, L., A global collisionless pic code in magnetic coordinates, Comput. Phys. Commun., 177, 409 (2007)
[12] Peeters, A. G.; Camenen, Y.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Strintzi, D.; Szepesi, G., The nonlinear gyro-kinetic flux tube code GKW, Comput. Phys. Commun., 180, 2650 (2009) · Zbl 1197.76004
[13] Baumgaertel, J. A.; Belli, E. A.; Dorland, W.; Guttenfelder, W.; Hammett, G. W.; Mikkelsen, D. R.; Rewoldt, G.; Tang, W. M.; Xanthopoulos, P., Simulating gyrokinetic microinstabilities in stellarator geometry with GS2, Phys. Plasmas, 18, Article 122301 pp. (2011)
[14] Xanthopoulos, P.; Plunk, G. G.; Zocco, A.; Helander, P., Intrinsic turbulence stabilization in a stellarator, Phys. Rev. X, 6, Article 021033 pp. (2016)
[15] Sánchez, E.; Kleiber, R.; Hatzky, R.; Borchardt, M.; Monreal, P.; Castejón, F.; López-Fraguas, A.; Sáez, X.; Velasco, J. L.; Calvo, I.; Alonso, A.; López-Bruna, D., Collisionless damping of flows in the TJ-II stellarator, Plasma Phys. Control. Fusion, 55, Article 014015 pp. (2013)
[16] Nunami, M.; Watanabe, T.-H.; Sugama, H., Gyrokinetic Vlasov code including full three-dimensional geometry of experiments, J. Plasma Fusion Res., 5, Article 016 pp. (2010)
[17] Spong, D. A.; Holod, I.; Todo, Y.; Osakabe, M., Global linear gyrokinetic simulation of energetic particle-driven instabilities in the LHD stellarator, Nucl. Fusion, 57, Article 086018 pp. (2017)
[18] Numata, R.; Howes, G. G.; Tatsuno, T.; Barnes, M.; Dorland, W., AstroGK: astrophysical gyrokinetics code, J. Comput. Phys., 229, 9347 (2010) · Zbl 1204.85021
[19] Ghosh, D.; Dorf, M. A.; Dorr, M. R.; Hittinger, J. A.F., Kinetic simulation of collisional magnetized plasmas with semi-implicit time integration, J. Sci. Comput., 77, 819-849 (2018) · Zbl 1407.65146
[20] Xanthopoulos, P.; Mynick, H. E.; Helander, P.; Turkin, Y.; Plunk, G. G.; Jenko, F.; Görler, T.; Told, D.; Bird, T.; Proll, J. H.E., Controlling turbulence in present and future stellarators, Phys. Rev. Lett., 113, Article 155001 pp. (2014)
[21] Brizard, A. J.; Hahm, T. S., Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys., 79, 421 (2007) · Zbl 1205.76309
[22] Parra, F. I.; Catto, P. J., Limitations of gyrokinetics on transport time scales, Plasma Phys. Control. Fusion, 50, Article 065014 pp. (2008)
[23] Abel, I. G.; Plunk, G. G.; Wang, E.; Barnes, M.; Cowley, S. C.; Dorland, W.; Schekochihin, A. A., Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport, and energy flows, Rep. Prog. Phys., Article 116201 pp. (2013)
[24] Burden, R. L.; Faires, J. D., Numerical Analysis (2011), Brooks/Cole: Brooks/Cole Boston
[25] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972), Dover: Dover New York · Zbl 0543.33001
[26] White, A. E.; Howard, N. T.; Greenwald, M. J.; Reinke, M. L.; Sung, C.; Baek, S.; Barnes, M.; Candy, J.; Dominguez, A.; Ernst, D.; Gao, C.; Hubbard, A. E.; Hughes, J. W.; Lin, Y.; Mikkelsen, D.; Parra, F. I.; Porkolab, M.; Rice, J.; Walk, J.; Wukitch, S. J., Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations, Phys. Plasmas, 20, Article 056106 pp. (2013)
[27] Citrin, J.; Jenko, F.; Mantica, P.; Told, D.; Bourdelle, C.; Dumont, R.; Garcia, J.; Haverkort, J. W., Ion temperature profile stiffness: non-linear gyrokinetic simulations and comparison with experiment, Nucl. Fusion, 54, Article 023008 pp. (2014)
[28] Görler, T.; White, A. E.; Told, D.; Jenko, F.; Holland, C.; Rhodes, T. L., A flux-matched gyrokinetic analysis of DIII-D L-mode turbulence, Phys. Plasmas, 21, Article 122307 pp. (2014)
[29] Howard, N. T.; Holland, C.; White, A. E.; Greenwald, M.; Candy, J.; Creely, A. J., Multi-scale gyrokinetic simulations: comparison with experiment and implications for predicting turbulence and transport, Phys. Plasmas, 23, Article 056109 pp. (2016)
[30] Nakata, M.; Honda, M.; Yoshida, M.; Urano, H.; Nunami, M.; Maeyama, S.; Watanabe, T.-H.; Sugama, H., Validation studies of gyrokinetic ITG and TEM turbulence simulations in a JT-60U tokamak using multiple flux matching, Nucl. Fusion, 56, Article 086010 pp. (2016)
[31] van Wyk, F.; Highcock, E. G.; Field, A. R.; Roach, C. M.; Schekochihin, A. A.; Parra, F. I.; Dorland, W., Ion-scale turbulence in mast: anomalous transport, subcritical transitions, and comparison to bes measurements, Plasma Phys. Control. Fusion, 59, Article 114003 pp. (2017)
[32] Beer, M. A.; Cowley, S. C.; Hammett, G. W., Field-aligned coordinates for nonlinear simulations of tokamak turbulence, Phys. Plasmas, 2, 7 (1995)
[33] Martin, M. F.; Landreman, M.; Xanthopoulos, P.; Mandell, N. R.; Dorland, W., The parallel boundary condition for turbulence simulations in low magnetic shear devices, Plasma Phys. Control. Fusion, 60, Article 095008 pp. (2018)
[34] Hirshman, S. P.; Whitson, J. C., Steepest-descent moment method for three-dimensional magnetohydrodynamic equilibria, Phys. Fluids, 26, 3553 (1983) · Zbl 0538.76124
[35] Hirshman, S. P.; van Rij, W. I.; Merkel, P., Three-dimensional free boundary calculations using a spectral green’s function method, Comput. Phys. Commun., 43, 143 (1986)
[36] Miller, R. L.; Chu, M. S.; Greene, J. M.; Lin-Liu, Y. R.; Waltz, R. E., Noncircular, finite aspect ratio, local equilibrium model, Phys. Plasmas, 5, 973 (1998)
[37] Lee, W. W., Gyrokinetic particle simulation model, J. Comput. Phys., 72, 243 (1987) · Zbl 0619.76063
[38] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2000), Dover Publications, Inc.
[39] Cooper, G. J.; Sayfy, A., Additive methods for the numerical solution of ordinary differential equations, Math. Comput., 35, 1159-1172 (1980) · Zbl 0454.65053
[40] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 89 (2001) · Zbl 0967.65098
[41] Orszag, S. A., On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components, J. Atmos. Sci., 28, 1074 (1971)
[42] Dorland, W.; Jenko, F.; Kotschenreuther, M.; Rogers, B. N., Electron temperature gradient turbulence, Phys. Rev. Lett., 85, 5579 (2000)
[43] Dimits, A. M.; Bateman, G.; Beer, M. A.; Cohen, B. I.; Dorland, W.; Hammett, G. W.; Kim, C.; Kinsey, J. E.; Kotschenreuther, M.; Kritz, A. H.; Lao, L. L.; Mandrekas, J.; Nevins, W. M.; Parker, S. E.; Redd, A. J.; Shumaker, D. E.; Sydora, R.; Weiland, J., Comparisons and physics basis of tokamak transport models and turbulence simulations, Phys. Plasmas, 7, 969 (2000)
[44] Barnes, M.; Dorland, W.; Tatsuno, T., Velocity space resolution in gyrokinetic simulations, Phys. Plasmas, 17, Article 032106 pp. (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.