×

Detecting critical regions in multidimensional data sets. (English) Zbl 1211.57019

Summary: We propose a new approach, based on the Conley index theory, for the detection and classification of critical regions in multidimensional data sets. The use of homology groups makes this method consistent and successful in all dimensions and allows us to generalize visual classification techniques based solely on the notion of connectedness which may fail in higher dimensions.

MSC:

57R45 Singularities of differentiable mappings in differential topology
37B30 Index theory for dynamical systems, Morse-Conley indices

Software:

CHomP
Full Text: DOI

References:

[1] Matsumoto, Y., (An Introduction to Morse Theory. An Introduction to Morse Theory, Mathematical Monographs, vol. 208 (2002), Amer. Math. Soc.) · Zbl 0990.57001
[2] (Boissonnat, J. D.; Teillaud, M., Effective Computational Geometry for Curves and Surfaces. Effective Computational Geometry for Curves and Surfaces, Math. and Visualization Series (2007), Springer-Verlag) · Zbl 1165.65318
[3] Allili, M.; Corriveau, D.; Derivière, S.; Kaczynski, T.; Trahan, A., Discrete dynamical system framework for construction of connections between critical regions in lattice height data, J. Math. Imaging Vision, 28, 2, 99-111 (2007) · Zbl 1523.68086
[4] G.H. Weber, G. Scheuermann, B. Hamann, Detecting critical regions in scalar fields, in: IEEE TCVG Symposium on Visualization, 2003, pp. 1-11.; G.H. Weber, G. Scheuermann, B. Hamann, Detecting critical regions in scalar fields, in: IEEE TCVG Symposium on Visualization, 2003, pp. 1-11.
[5] Edelsbrunner, H.; Harer, J.; Zomorodian, A. J., Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds, AMC Symposium on Computational Geometry. AMC Symposium on Computational Geometry, Discrete Comput. Geom., 30, 1, 87-107 (2003) · Zbl 1029.57023
[6] H. Edelsbrunner, J. Harer, V. Natarajan, V. Pascucci, Morse-Smale complexes for piecewise linear 3-manifolds, in: Proc. IEEE Conf. Visualization, 2004, pp. 275-280.; H. Edelsbrunner, J. Harer, V. Natarajan, V. Pascucci, Morse-Smale complexes for piecewise linear 3-manifolds, in: Proc. IEEE Conf. Visualization, 2004, pp. 275-280. · Zbl 1375.68125
[7] Arnold, V. I., The Theory of Singularities and its Applications (1993), Acad. Naz. dei Lincei: Acad. Naz. dei Lincei Pisa · Zbl 0724.57024
[8] Milnor, J., (Singular Points of Complex Hypersurfaces. Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies, vol. 61 (1968), Princeton Univ. Press) · Zbl 0184.48405
[9] Houston, K., Topology of differentiable mappings, (Handbook of Global Analysis, vol. 1213 (2008), Elsevier: Elsevier Amsterdam), 493-532 · Zbl 1236.58040
[10] CHomP, Computational homology project. http://chomp.rutgers.edu; CHomP, Computational homology project. http://chomp.rutgers.edu
[11] Kaczynski, T.; Mischaikow, K.; Mrozek, M., (Computational Homology. Computational Homology, Appl. Math. Sci. Series, vol. 157 (2004), Springer-Verlag) · Zbl 1039.55001
[12] Allili, M.; Ethier, M.; Kaczynski, T., Critical region analysis of scalar fields in arbitrary dimensions, (Proc. SPIE-IS&T Electronic Imaging, Visualization and Data Analysis, vol. 7530 (2010)), 7530-7537
[13] Corriveau, D.; Allili, M.; Ziou, D., Morse connections graph for shape representation, (Lecture Notes in Computer Science, vol. 3708 (2005), Springer-Verlag), 219-226
[14] Edelsbrunner, H., Surface reconstruction by wrapping finite point sets in space, (Aronov, B.; Basu, S.; Pach, J.; Sharir, M., Ricky Pollack and Eli Goodman Festschrift. Ricky Pollack and Eli Goodman Festschrift, Discr. and Comp. Geom. (2003), Springer-Verlag), 379-404 · Zbl 1104.68798
[15] Boczko, E.; Kalies, W. D.; Mischaikow, K., Polygonal approximation of flows, Topology Appl., 154, 2501-2520 (2007) · Zbl 1118.37017
[16] Carlsson, G.; Zomorodian, A., The theory of multidimensional persistence, Discrete Comput. Geom., 42, 1, 71-93 (2009) · Zbl 1187.55004
[17] Cerri, A.; DiFabio, B.; Ferri, M.; Frosini, P.; Landi, C., Multidimensional persistent homology is stable
[18] Robbin, J.; Salamon, D., Dynamical systems, shape theory, and the Conley index, Ergodic Theory Dynam. Systems, 8*, 375-393 (1988) · Zbl 0682.58040
[19] Mischaikow, K.; Mrozek, M., Conley index theory, (Fiedler, B., Handbook of Dynamical Systems II: Towards Applications (2002), North-Holland) · Zbl 1035.37010
[20] Ważewski, T., Une méthode topologique de l’examen du phénomène asymptotique relativement aux équations différentielles ordinaires, Rend. Accad. Lincei, 3, 8, 210-215 (1947) · Zbl 0029.29302
[21] M. Allili, Une approche algorithmique pour le calcul de l’homologie de fonctions continues, Ph.D. Thesis, Dép. de Math. et d’info., Univ. de Sherbrooke, 1998.; M. Allili, Une approche algorithmique pour le calcul de l’homologie de fonctions continues, Ph.D. Thesis, Dép. de Math. et d’info., Univ. de Sherbrooke, 1998.
[22] Kaczynski, T.; Mrozek, M., Conley index for discrete multivalued dynamical systems, Topology Appl., 65, 83-96 (1995) · Zbl 0843.54042
[23] A. Szymczak, Index pairs: from dynamics to combinatorics and back, Ph.D. Thesis, Georgia Inst. Tech., Atlanta 1999.; A. Szymczak, Index pairs: from dynamics to combinatorics and back, Ph.D. Thesis, Georgia Inst. Tech., Atlanta 1999.
[24] P. Dłotko, T. Kaczynski, M. Mrozek, T. Wanner, Coreduction homology algorithm for regular CW-complexes, Discrete & Comput. Geom., Online First, 15 Oct, 2010.; P. Dłotko, T. Kaczynski, M. Mrozek, T. Wanner, Coreduction homology algorithm for regular CW-complexes, Discrete & Comput. Geom., Online First, 15 Oct, 2010. · Zbl 1229.55001
[25] Biasotti, S.; Giorgi, D.; Spagnuolo, M.; Falcidieno, B., Reeb graphs for shape analysis and applications, Theoret. Comput. Sci., 392, 1-3, 5-22 (2008) · Zbl 1134.68064
[26] Shinagawa, Y.; Kunii, T. L., Constructing a Reeb graph automatically from cross sections, IEEE Comput. Graph. Appl., 11, 44-51 (1991)
[27] Fomenko, A. T.; Kunii, T. L., Topological Modeling for Visualization (1997), Springer-Verlag: Springer-Verlag Tokyo · Zbl 1120.37300
[28] Frosini, P., Connections between size functions and critical points, Math. Methods Appl. Sci., 19, 555-569 (1996) · Zbl 0857.55005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.