×

Volume preserving subgroups of \({\mathcal A}\) and \({\mathcal K}\) and singularities in unimodular geometry. (English) Zbl 1191.58009

The reviewed paper concerns the following situation. Let \(f:({\mathbb K}^n,0)\to({\mathbb K}^p,0)\) be a smooth map-germ (\({\mathbb K}={\mathbb C}\) or \({\mathbb R}\), for \({\mathbb K}={\mathbb C}\) smooth means complex-analytic, for \({\mathbb K}={\mathbb R}\) smooth means either \(C^\infty\) or real-analytic). Such germs form the space \(A(n,p)\) [see J. W. Bruce and T. J. Gaffney, J. Lond. Math. Soc., II. Ser. 26, 465–474 (1982; Zbl 0575.58008); C. T. C. Wall, Bull. Lond. Math. Soc. 13, 481–539 (1981; Zbl 0451.58009)]. The group \({\mathcal R}\) (respectively, \({\mathcal L}\)) is the group of diffeomorphisms \(({\mathbb K}^n,0)\rightarrow({\mathbb K}^n,0)\) (respectively, \(({\mathbb K}^p,0)\rightarrow({\mathbb K}^p,0)\)). The group \({\mathcal A}={\mathcal R}\times{\mathcal L}\) acts on \(A(n,p)\) by \((\varphi,\psi)\cdot f=\psi\circ f\circ\varphi^{-1}\). Two germs \(f,g\in A(n,k)\) are said to be \(\mathcal A\) equivalent if they lie in the same \(\mathcal A\) orbit. The contact group \(\mathcal K\) is the group of germs of diffeomorphisms \(H:({\mathbb K}^{n+p},0)\rightarrow({\mathbb K}^{n+p},0)\) such that there exists a diffeomorphism \(h:({\mathbb K}^n,0)\rightarrow({\mathbb K}^n,0)\) which satisfies (i) \(H\circ i=i\circ h\), where \(i:({\mathbb K}^n,0)\rightarrow({\mathbb K}^n\times{\mathbb K}^p,0)\) is the inclusion \(i(x)=(x,0)\); and (ii) \(\pi\circ H=h\circ\pi\), where \(\pi:({\mathbb K}^n\times{\mathbb K}^p,0)\rightarrow({\mathbb K}^n,0)\) is the natural projection. The action \(H\cdot f\) on \(f\in A(n,p)\) is defined by \((h(x),H\cdot f(x))=H(x,f(x))\). Now \(f,g\in A(n,k)\) are \(\mathcal K\) equivalent if they lie in the same \(\mathcal K\) orbit.
A map-germ \(f\in A(n,k)\) is said to be \({\mathcal A}\) stable [see J. Damon and A. Galligo, Invent. Math. 32, 103–132 (1976; Zbl 0333.57017)] if for a representative of \(f\) defined in a neighbourhood of 0, \(f_1:U\rightarrow{\mathbb K}^p\), and a mapping \(f_2:U\rightarrow{\mathbb K}^p\) sufficiently near \(f_1\) in the Whitney topology (i.e., the topology of uniform convergence of all the derivatives on compact sets) there are germs of diffeomorphisms \(h:{\mathbb K}^n\rightarrow{\mathbb K}^n\) and \(k:{\mathbb K}^p\rightarrow{\mathbb K}^p\) but with \(h(0),k(0)\) possibly different from zero such that \(k^{-1}\circ f_2\circ h=f\) as a germ at 0. Let \(J^k(n,p)\) be the space of \(k\)-jets of mappings \(A(n,p)\) and for a fixed group \({\mathcal G}\) let \({\mathcal G}^k\) be the corresponding space of \(k\)-jets of diffeomorphisms. A singular map-germ \(f\in A(n,p)\) is said to be \({\mathcal G}\) simple if there exist \(K>0\) and \(L>0\) such that, for every \(k\geq K\), there exists a neigbourhood (in \(J^k(n,p)\)) of the orbit \(f{\mathcal G}^k\) that intersects not more than \(L\) other orbits [V. I. Arnold, et al. Singularities of differentiable maps. Volume I: The classification of critical points, caustics and wave fronts. Monographs in Mathematics, Vol. 82. Boston-Basel-Stuttgart: Birkhäuser (1985; Zbl 0554.58001)] or S. Janeczko, Selected topics in catastrophe theory, in Polish].
The authors of the reviewed paper consider the following classification problems. (1) The classification of germs of smooth maps \(f:({\mathbb K}^n,0)\rightarrow({\mathbb K}^p,\Omega_p,0)\) up to \({\mathcal A}_{\Omega_p}\) equivalence (i.e., for the subgroup of \({\mathcal A}\) in which the left coordinate changes preserve a given volume form \(\Omega_p\) in the target \({\mathbb K}^p\)), and also of multi-germs of such maps up to \({\mathcal A}_{\Omega_p}\) equivalence. (2) The classification of variety-germs \(V=f^{-1(0)}\subset({\mathbb K}^n,\Omega_n,0)\) up to \({\mathcal K}_{\Omega_n}\) equivalence of \(f:({\mathbb K}^n,\Omega_n,0)\rightarrow({\mathbb K}^p,0)\) (i.e., for the subgroup of \({\mathcal K}\) in which the right coordinate changes preserve a given volume form \(\Omega_n\) in the source \({\mathbb K}^n\)). The authors study the \({\mathcal G}_{\Omega_q}\) moduli space of \(f\) that parametrizes the \({\mathcal G}_{\Omega_q}\) orbits (\(q=n\) or \(p\)) inside the \({\mathcal G}\) orbit of \(f\) (a discussion: moduli vs. parameter spaces is given for example in [J. Harris and I. Morrison, Moduli of curves. Graduate Texts in Mathematics. 187. New York, NY: Springer (1998; Zbl 0913.14005)]; the term “modality” is the counterpart of the term “number of parameters”). The authors find, for example, that this moduli space vanishes for \({\mathcal G}_{\Omega_q}={\mathcal A}_{\Omega_p}\) and \({\mathcal A}\) stable maps \(f\) and for \({\mathcal G}_{\Omega_q}={\mathcal K}_{\Omega_n}\) and \({\mathcal K}\) simple maps \(f\). On the other hand, they show that there are \({\mathcal A}\) stable maps \(f\) with infinite-dimensional \({\mathcal A}_{\Omega_n}\) moduli space.

MSC:

58K40 Classification; finite determinacy of map germs
32S50 Topological aspects of complex singularities: Lefschetz theorems, topological classification, invariants
32S30 Deformations of complex singularities; vanishing cycles

References:

[1] Arnol’d V.I.: Remarks on Poisson structures on a plane and on other powers of volume elements. J. Sov. Math. 47, 2509–2516 (1989) · Zbl 0694.58015 · doi:10.1007/BF01102994
[2] Arnol’d V.I.: Simple singularities of curves. Proc. Steklov Inst. Math. 226, 20–28 (1999)
[3] Arnol’d, V.I.: First Steps of Local Symplectic Algebra. Advances in Soviet Mathematics, D. Fuchs birthday volume. American Mathematical Society, Providence (1999)
[4] Bloom T., Herrera M.: De Rham cohomology of an analytic space. Invent. Math. 7, 275–296 (1969) · Zbl 0175.37301 · doi:10.1007/BF01425536
[5] Brieskorn E.: Die Monodromie der isolierten Singularitäten von Hyperflächen. Manuscr. Math. 2, 103–161 (1970) · Zbl 0186.26101 · doi:10.1007/BF01155695
[6] Bruce J.W., Gaffney T.: Simple singularities of maps \({({\mathbb C}, 0) \rightarrow ({\mathbb C}^2, 0)}\) . J. Lond. Math. Soc. 26, 464–474 (1982)
[7] Bruce J.W., du Plessis A.A., Wilson L.C.: Discriminants and liftable vector fields. J. Algebraic Geom. 3, 725–753 (1994) · Zbl 0821.58007
[8] Colin de Verdière Y.: Singular Lagrangian manifolds and semi-classical analysis. Duke Math. J. 116, 263–298 (2003) · Zbl 1074.53066 · doi:10.1215/S0012-7094-03-11623-3
[9] Colin de Verdière Y., Vey J.: Le lemme de Morse isochore. Topology 18, 283–293 (1979) · Zbl 0441.58003 · doi:10.1016/0040-9383(79)90019-3
[10] Cooper T., Mond D., Wik Atique R.: Vanishing topology of codimension 1 multi-germs over \({{\mathbb R}\,{\mathrm and}\,{\mathbb C}}\) . Compositio Math. 131, 121–160 (2002) · Zbl 1002.32016 · doi:10.1023/A:1014930205374
[11] Damon, J.: The unfolding and determinacy results for subgroups of \({{\mathcal A}\,{\mathrm and}\,{\mathcal K}}\) . In: Proceedings of Symposia in Pure Mathematics, vol. 40, pp. 233–254, Part 1. American Mathematical Society, Providence (1983)
[12] Damon, J.: The unfolding and determinacy results for subgroups of \({{\mathcal A}}\) and \({{\mathcal K}}\) . Memoirs American Mathematical Society, vol. 50, no. 306. American Mathematical Society, Providence (1984) · Zbl 0545.58010
[13] Damon J., Mond D.: \({{\mathcal A}}\) -codimension and the vanishing topology of discriminants. Invent. Math. 106, 217–242 (1991) · Zbl 0772.32023 · doi:10.1007/BF01243911
[14] Dimca A., Gibson C.G.: Contact unimodular germs from the plane to the plane. Q. J. Math. Oxford 34, 281–295 (1983) · Zbl 0537.58007 · doi:10.1093/qmath/34.3.281
[15] Dimca A., Gibson C.G.: Classification of equidimensional contact unimodular map germs. Math. Scand. 56, 15–28 (1985) · Zbl 0579.32014
[16] Domitrz, W.: Local symplectic algebra of quasi-homogeneous curves. Fundam. Math. (to appear) · Zbl 1173.53038
[17] Domitrz W., Janeczko S., Zhitomirskii M.: Relative Poincare lemma, contractibility, quasi-homogeneity and vector fields tangent to a singular variety. Ill. J. Math. 48, 803–835 (2004) · Zbl 1062.58037
[18] Domitrz W., Janeczko S., Zhitomirskii M.: Symplectic singularities of varieties: the method of algebraic restrictions. J. Reine Angew. Math. 618, 197–235 (2008) · Zbl 1157.58016 · doi:10.1515/CRELLE.2008.037
[19] Francoise J.-P.: Modèle local simultané d’une fonction et d’une forme de volume. Astèrisque S. M. F. 59–60, 119–130 (1978)
[20] Francoise J.-P.: Réduction simultanée d’un croisement normal et d’un volume. Bol. Soc. Bras. Mat. 13, 79–83 (1982) · Zbl 0581.58009 · doi:10.1007/BF02584736
[21] Gabrielov A.M.: Bifurcations, Dynkin diagrams and the moduli number for isolated singularities. Funct. Anal. Appl. 8, 7–13 (1974) · Zbl 0344.32007 · doi:10.1007/BF01078593
[22] Garay M.D.: An isochore versal deformation theorem. Topology 43, 1081–1088 (2004) · Zbl 1100.32010 · doi:10.1016/j.top.2003.12.001
[23] Gibson C.G., Hobbs C.A.: Simple singularities of space curves. Math. Proc. Camb. Phil. Soc. 113, 297–310 (1993) · Zbl 0789.58013 · doi:10.1017/S0305004100075976
[24] Giusti M.: Classification des singularités isolées d’intersections complètes simples. C. R. Acad. Sci. Paris. Sér. A-B 284, 167–169 (1977) · Zbl 0346.32015
[25] Goryunov V.V.: Singularities of projections of complete intersections. J. Sov. Math. 27, 2785–2811 (1984) · Zbl 0566.58003 · doi:10.1007/BF01084821
[26] Greuel G.-M.: Der Gauss–Manin–Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten. Math. Ann. 214, 235–266 (1975) · doi:10.1007/BF01352108
[27] Greuel G.-M.: Dualität in der lokalen Kohomologie isolierter Singularitäten. Math. Ann. 250, 157–173 (1980) · Zbl 0417.14003
[28] Houston, K., Kirk, N.P.: On the classification and geometry of corank 1 map-germs from three- to four-space. In: Singularity Theory, London Mathematical Society. Lecture Note Series, vol. 263, pp. 325–351. Cambridge University Press, Cambridge (1999) · Zbl 0945.58030
[29] Ishikawa G., Janeczko S.: Symplectic bifurcations of plane curves and isotropic liftings. Q. J. Math. Oxford Ser. 54(2), 73–102 (2003) · Zbl 1049.58039 · doi:10.1093/qjmath/54.1.73
[30] Klotz C., Pop O., Rieger J.H.: Real double points of deformations of \({{\mathcal A}}\) -simple map-germs from \({{\mathbb R}^n\,{\mathrm to}\,{\mathbb R}^{2n}}\) . Math. Proc. Camb. Phil. Soc. 142, 341–363 (2007) · Zbl 1122.58020 · doi:10.1017/S0305004106009911
[31] Kostov, V.P., Lando, S.K.: Versal deformations of powers of volume forms. In: Computational Algebraic Geometry (Nice, 1992). Progr. Math., vol. 109, pp. 143–162. Birkhäuser Boston, Boston (1993) · Zbl 0792.32024
[32] Lando, S.K.: Deformations of differential forms, Trudy Mat. Inst. Steklov., vol. 209, Osob. Gladkikh Otobrazh. s Dop. Strukt., pp. 167–199 (Russian) (1995)
[33] Lando, S.K.: Singularities of the differential forms of the complex degree and their deformations. In: Singularity Theory (Trieste, 1991), pp. 289–305. World Scientific Publishing, River Edge (1995) · Zbl 0944.32028
[34] Lando S.K.: Normal forms of powers of volume forms. Funktsional. Anal. i Prilozhen 19, 78–79 (1985) (Russian) · Zbl 0589.32048 · doi:10.1007/BF01078398
[35] Malgrange B.: Intégrales asymptotiques et monodromie. Ann. Sci. École Norm. Sup. 20, 147–176 (1974) · Zbl 0305.32008
[36] Marar W.L., Tari F.: On the geometry of simple germs of corank 1 from \({{\mathbb R}^3\,{\mathrm to}\,{\mathbb R} ^3}\) . Math. Proc. Camb. Philos. Soc. 119, 469–481 (1996) · Zbl 1005.57501 · doi:10.1017/S030500410007434X
[37] Martinet, J.: Singularities of Smooth Functions and Maps. London Mathematical Society. Lecture Note Series, vol. 58. Cambridge University Press, Cambridge (1982) · Zbl 0522.58006
[38] Mather J.N.: Stability of C mappings, IV: classification of stable germs by \({{\mathbb R}}\) -algebras. Publ. Math. I.H.E.S. 37, 223–248 (1969) · Zbl 0202.55102
[39] Mather J.N.: Stability of C mappings, V: transversality. Adv. Math. 4, 301–336 (1970) · Zbl 0207.54303 · doi:10.1016/0001-8708(70)90028-9
[40] Mather, J.N.: Stability of C mappings, VI: the nice dimensions. In: Proceedings of the Liverpool Singularities Symposium I. Lecture Notes in Mathematics, vol. 192, pp. 207–253. Springer, Berlin (1970)
[41] Mond D.: On the classification of germs of maps from \({{\mathbb R}^2\,{\mathrm to}\,{\mathbb R}^3}\) . Proc. Lond. Math. Soc. 50, 333–369 (1985) · Zbl 0557.58006 · doi:10.1112/plms/s3-50.2.333
[42] Moser J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 280–296 (1965) · Zbl 0141.19407 · doi:10.1090/S0002-9947-1965-0182927-5
[43] Reiffen H.-J.: Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen. Math. Z. 101, 269–284 (1967) · Zbl 0164.09401 · doi:10.1007/BF01115106
[44] Rieger J.H.: Families of maps from the plane to the plane. J. Lond. Math. Soc. 36, 351–369 (1987) · Zbl 0639.58007 · doi:10.1112/jlms/s2-36.2.351
[45] Rieger J.H.: \({{\mathcal A}}\) -unimodal map-germs into the plane. Hokkaido Math. J. 33, 47–64 (2004) · Zbl 1152.58314
[46] Rieger J.H., Ruas M.A.S.: Classification of \({{\mathcal A}}\) -simple germs from k n to k 2. Compositio Math. 79, 99–108 (1991) · Zbl 0724.58008
[47] Sebastiani M.: Preuve d’une conjecture de Brieskorn. Manuscr. Math. 2, 301–308 (1970) · Zbl 0194.11402 · doi:10.1007/BF01168382
[48] Varchenko A.N.: Local classification of volume forms in the presence of a hypersurface. Funktsional. Anal. i Prilozhen 19(4), 23–31 (1985) (Russian) · Zbl 0661.32017
[49] Vey J.: Sur le lemme de Morse. Invent. Math. 40, 1–10 (1977) · Zbl 0348.58007 · doi:10.1007/BF01389858
[50] Wall C.T.C.: Finite determinacy of smooth map-germs. Bull. Lond. Math. Soc. 13, 481–539 (1981) · doi:10.1112/blms/13.6.481
[51] Wall, C.T.C.: Classification of unimodal isolated singularities of complete intersections. In: Proceedings of Symposia in Pure Mathematics, vol. 40, Part 2, pp. 625–640 (1983) · Zbl 0519.58013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.