×

Structure and stability of steady porous medium convection at large Rayleigh number. (English) Zbl 1328.76070

Summary: A systematic investigation of unstable steady-state solutions of the Darcy-Oberbeck-Boussinesq equations at large values of the Rayleigh number Ra is performed to gain insight into two-dimensional porous medium convection in domains of varying aspect ratio \(L\). The steady convective states are shown to transport less heat than the statistically steady ‘turbulent’ flow realised at the same parameter values: the Nusselt number \(\mathrm{Nu}\sim\mathrm{Ra}\) for turbulent porous medium convection, while \(\mathrm{Nu}\sim\mathrm{Ra}^{0.6}\) for the maximum heat-transporting steady solutions. A key finding is that the lateral scale of the heat-flux-maximising solutions shrinks roughly as \(L \sim\mathrm{Ra}^{-0.5}\), reminiscent of the decrease of the mean inter-plume spacing observed in turbulent porous medium convection as the thermal forcing is increased. A spatial Floquet analysis is performed to investigate the linear stability of the fully nonlinear steady convective states, extending a recent study by D. R. Hewitt et al. [J. Fluid Mech. 737, 205–231 (2013; Zbl 1294.76121)] by treating a base convective state, and secondary stability modes, that satisfy appropriate boundary conditions along plane parallel walls. As in that study, a bulk instability mode is found for sufficiently small-aspect-ratio base states. However, the growth rate of this bulk mode is shown to be significantly reduced by the presence of the walls. Beyond a certain critical Ra-dependent aspect ratio, the base state is most strongly unstable to a secondary mode that is localised near the heated and cooled walls. Direct numerical simulations, strategically initialised to investigate the fully nonlinear evolution of the most dangerous secondary instability modes, suggest that the (long time) mean inter-plume spacing in statistically steady porous medium convection results from a balance between the competing effects of these two types of instability.

MSC:

76S05 Flows in porous media; filtration; seepage
76E06 Convection in hydrodynamic stability
80A20 Heat and mass transfer, heat flow (MSC2010)

Citations:

Zbl 1294.76121

References:

[1] DOI: 10.1115/1.3248087 · doi:10.1115/1.3248087
[2] DOI: 10.1017/S0022112086000162 · Zbl 0632.76111 · doi:10.1017/S0022112086000162
[3] DOI: 10.1017/S0022112067002538 · Zbl 0322.76020 · doi:10.1017/S0022112067002538
[4] DOI: 10.1016/j.physleta.2013.09.009 · Zbl 1370.76182 · doi:10.1016/j.physleta.2013.09.009
[5] DOI: 10.1175/1520-0485(1995)025&lt;1206:SIILC&gt;2.0.CO;2 · doi:10.1175/1520-0485(1995)025<1206:SIILC>2.0.CO;2
[6] DOI: 10.1017/S0022112082001918 · Zbl 0503.76107 · doi:10.1017/S0022112082001918
[7] DOI: 10.1017/CBO9780511807473 · Zbl 1177.76005 · doi:10.1017/CBO9780511807473
[8] DOI: 10.1063/1.1707601 · Zbl 0063.02071 · doi:10.1063/1.1707601
[9] DOI: 10.1017/S0022112074000231 · Zbl 0287.76033 · doi:10.1017/S0022112074000231
[10] DOI: 10.1017/jfm.2014.216 · doi:10.1017/jfm.2014.216
[11] DOI: 10.1017/S0022112067000023 · doi:10.1017/S0022112067000023
[12] DOI: 10.1017/jfm.2013.559 · Zbl 1294.76121 · doi:10.1017/jfm.2013.559
[13] Corson, Geophysical Fluid Dynamics Program Report (2011)
[14] DOI: 10.1103/PhysRevLett.108.224503 · doi:10.1103/PhysRevLett.108.224503
[15] DOI: 10.1017/S0022112074001571 · Zbl 0291.76019 · doi:10.1017/S0022112074001571
[16] DOI: 10.1146/annurev.fl.20.010188.002415 · doi:10.1146/annurev.fl.20.010188.002415
[17] DOI: 10.1080/03091920802622236 · doi:10.1080/03091920802622236
[18] DOI: 10.1063/1.864226 · doi:10.1063/1.864226
[19] DOI: 10.1017/S0022112094004386 · Zbl 0925.76735 · doi:10.1017/S0022112094004386
[20] DOI: 10.1017/S0022112072002988 · Zbl 0237.76023 · doi:10.1017/S0022112072002988
[21] DOI: 10.1016/0167-2789(92)90042-L · Zbl 0741.76075 · doi:10.1016/0167-2789(92)90042-L
[22] DOI: 10.1017/S0022112067001661 · Zbl 0159.28202 · doi:10.1017/S0022112067001661
[23] Fowler, Mathematical Models in the Applied Sciences (1997) · Zbl 0997.00535
[24] Boyd, Chebyshev and Fourier Spectral Methods (2000)
[25] DOI: 10.1002/9781118671627 · doi:10.1002/9781118671627
[26] DOI: 10.2514/3.38 · doi:10.2514/3.38
[27] Phillips, Flow and Reactions in Permeable Rocks (1991)
[28] DOI: 10.1017/S002211207200059X · Zbl 0252.76066 · doi:10.1017/S002211207200059X
[29] DOI: 10.1017/S0022112003007298 · Zbl 1134.76462 · doi:10.1017/S0022112003007298
[30] DOI: 10.1017/S0022112083000518 · Zbl 0556.76039 · doi:10.1017/S0022112083000518
[31] Nield, Convection in Porous Media (2006) · Zbl 1256.76004
[32] Metz, IPCC Special Report on Carbon Dioxide Capture and Storage (2005)
[33] DOI: 10.1017/S030500410002452X · doi:10.1017/S030500410002452X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.