×

Existence result for a double phase problem involving the \((p(x),q(x))\)-Laplacian operator. (English) Zbl 1522.35282

Summary: The Dirichlet boundary value problem for elliptic equations involving the \((p(x), q(x))\)-Laplacian operator with a reaction term depending on the gradient and on two real parameters is considered in this paper. Using the topological degree theory for a class of demicontinuous operators of generalized \((S_+)\) and the theory of the variable exponent Sobolev spaces, we prove the existence of at least one weak solution of such problem.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35A01 Existence problems for PDEs: global existence, local existence, non-existence
47H11 Degree theory for nonlinear operators
Full Text: DOI

References:

[1] ABOULAICH, R.—MESKINE, D.—SOUISSI, A.: New diffusion models in image processing, Comput. Math. Appl. 56 (2008), 874-882. · Zbl 1155.35389
[2] ACERBI, E.—MINGIONE, G.: Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal. 156 (2001), 121-140. · Zbl 0984.49020
[3] ALSAEDI, R.: Perturbed subcritical Dirichlet problems with variable exponents, Electron. J. Differential Equations 295 (2016), 1-12. · Zbl 1357.35110
[4] ANTONTSEV, S.—SHMAREV, S.: A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions, Nonlinear Anal. 60 (2005), 515-545. · Zbl 1066.35045
[5] BAHROUNI, A.—RADULESCU, V. D.—REPOVS, D. D.: Double phase transonic flow problems with variable growth: Nonlinear patterns and stationary waves, Nonlinearity 32(7) (2019), 2481-2495. · Zbl 1419.35056
[6] BENCI, V.—D’AVENIA, P.—FORTUNATO, D.—PISANI, L.: Solitons in several space dimensions: Derrick’s problem and infinitely many solutions, Arch. Ration. Mech. Anal. 154(4) (2000), 297-324. · Zbl 0973.35161
[7] BERKOVITS, J.: Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J. Differential Equations 234 (2007), 289-310. · Zbl 1114.47049
[8] CHEN, Y.—LEVINE, S.—RAO, M.: Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383-1406. · Zbl 1102.49010
[9] CHERFILS, L.—IL’YASOV, Y.: On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian, Commun. Pure Appl. Anal. 4 (2005), 9-22. · Zbl 1210.35090
[10] EL OUAARABI, M.—ABBASSI, A.—ALLALOU, C.: Existence result for a Dirichlet problem governed by nonlinear degenerate elliptic equation in weighted Sobolev spaces, J. Elliptic Parabol. Equ. 7(1) (2021), 221-242. · Zbl 1472.35184
[11] EL OUAARABI, M.—ALLALOU, C.—ABBASSI, A.: On the Dirichlet problem for some nonlinear degenerated elliptic equations with weight, 7th International Conference on Optimization and Applications (ICOA), 2021, 1-6.
[12] EL OUAARABI, M.—ABBASSI, A.—ALLALOU, C.: Existence Result for a general nonlinear degenerate elliptic problems with measure datum in weighted Sobolev spaces, Int. J. Optim. Appl. 1(2) (2021), 1-9.
[13] EL OUAARABI, M.—ABBASSI, A.—ALLALOU, C.: Existence and uniqueness of weak solution in weighted Sobolev spaces for a class of nonlinear degenerate elliptic problems with measure data, Int. J. Nonlinear Anal. Appl. 13(2) (2021), 2635-2653.
[14] FAN, X. L.—ZHAO, D.: On the spaces L^p(x)(Ω) and W^m,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), 424-446. · Zbl 1028.46041
[15] FAN, X. L.—ZHANG, Q. H.: Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852. · Zbl 1146.35353
[16] KIM, I. S.—HONG, S. J.: A topological degree for operators of generalized (S_+) type, Fixed Point Theory Appl. 1 (2015), 1-16. ´ ´ · Zbl 1361.47018
[17] KOVACIK, O.—RAKOSNIK, J.: On spaces L^p(x) and W^1,p(x), Czechoslovak Math. J. 41(4) (1991), 592-618. · Zbl 0784.46029
[18] LIU,W. L.—DAI, G. W.: Existence and multiplicity results for double phase problem, J. Differential Equations 265 (2018), 4311-4334. · Zbl 1401.35103
[19] MARCELLINI, P.: Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal. 105 (1989), 267-284. · Zbl 0667.49032
[20] RAJAGOPAL, K. R.—RUZICKA, M.: Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn. 13(1) (2001), 59-78. · Zbl 0971.76100
[21] RUZICKA, M.: Electrorheological Fluids: Modeling and Mathematical Theory, Springer Science & Business Media, 2000. · Zbl 0968.76531
[22] WANG, B. S.—HOU, G. L.—GE, B.: Existence of solutions for double-phase problems by topological degree, J. Fixed Point Theory Appl. 23(1) (2021), 1-10. · Zbl 1460.35111
[23] ZEIDLER, E.: Nonlinear Functional Analysis and its Applications II/B, Springer-Verlag, New York, 1990. · Zbl 0684.47029
[24] ZHIKOV, V. V.: Averaging of functionals of the calculus of variations and elasticity theory, Izv. Ross. Akad. Nauk Ser. Mat.50(4) (1986), 675-710.
[25] ZHIKOV, V. V.: On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci. 173 (2011), 463-570. · Zbl 1279.49005
[26] ZHIKOV, V. V.: On some variational problems, Russ. J. Math. Phys. 5 (1997), 105-116. · Zbl 0917.49006
[27] ZHIKOV, V. V.—KOZLOV, S. M.—OLEINIK, O. A.: Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, 1994. · Zbl 0838.35001
[28] ZHIKOV, V. V.: On Lavrentiev’s Phenomenon, Russ. J. Math. Phys. 3 (1995), 249-269. · Zbl 0910.49020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.