×

Existence result for a Neumann boundary value problem governed by a class of \(p(x)\)-Laplacian-like equation. (English) Zbl 1530.35216

Summary: In this article, we consider a Neumann boundary value problem driven by \(p (x)\)-Laplacian-like operator with a reaction term depending also on the gradient (convection) and on three real parameters, originated from a capillary phenomena, of the following form: \[ \begin{aligned} \begin{cases} - \Delta_{p (x)}^l u + \delta | u |^{\zeta (x) - 2} u = \mu g (x, u) + \lambda f (x, u, \nabla_u) \quad &\text{ in } \Omega,\\ \frac{\partial_u}{\partial \eta} = 0 \quad &\text{ on } \partial \Omega, \end{cases} \end{aligned} \] where \(\Delta_{p (x)}^l u\) is the \(p (x)\)-Laplacian-like operator, \(\Omega\) is a smooth bounded domain in \(\mathbb{R}^N\), \(\delta\), \(\mu\) and \(\lambda\) are three real parameters, \(p (x)\), \(\zeta (x) \in C_+ (\overline{\Omega})\), \(\eta\) is the outer unit normal to \(\partial \Omega\) and \(g\), \(f\) are Carathéodory functions. Under suitable nonstandard growth conditions on \(g\) and \(f\) and using the topological degree for a class of demicontinuous operator of generalized \((S_+)\) type and the theory of variable exponent Sobolev spaces, we establish the existence of weak solution for the above problem.

MSC:

35Q35 PDEs in connection with fluid mechanics
76A05 Non-Newtonian fluids
76W05 Magnetohydrodynamics and electrohydrodynamics
76T20 Suspensions
78A30 Electro- and magnetostatics
35D30 Weak solutions to PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Full Text: DOI

References:

[1] A. Abbassi, C. Allalou and A. Kassidi, Existence of weak solutions for nonlinear p-elliptic problem by topological degree, Nonlinear Dyn. Syst. Theory 20(3) (2020), 229-241. · Zbl 1454.35192
[2] A. Abbassi, C. Allalou and A. Kassidi, Existence results for some nonlinear elliptic equations via topological degree methods, J. Elliptic Parabol Equ. 7(1) (2021), 121-136. doi:10.1007/s41808-021-00098-w. · Zbl 1472.35155 · doi:10.1007/s41808-021-00098-w
[3] R. Aboulaich, D. Meskine and A. Souissi, New diffusion models in image processing, Comput. Math. Appl. 56 (2008), 874-882. doi:10.1016/j.camwa.2008.01.017. · Zbl 1155.35389 · doi:10.1016/j.camwa.2008.01.017
[4] E. Acerbi and G. Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal. 156 (2001), 121-140. doi:10.1007/s002050100117. · Zbl 0984.49020 · doi:10.1007/s002050100117
[5] S. Antontsev and S. Shmarev, A model porous medium equation with variable exponent of nonlinearity: Existence, unique-ness and localization properties of solutions, Nonlinear Anal. 60 (2005), 515-545. doi:10.1016/j.na.2004.09.026. · Zbl 1066.35045 · doi:10.1016/j.na.2004.09.026
[6] M. Avci, Ni-Serrin type equations arising from capillarity phenomena with non-standard growth, Bound. Value Probl. 2013(1) (2013), 1. doi:10.1186/1687-2770-2013-1. · Zbl 1294.34087 · doi:10.1186/1687-2770-2013-1
[7] J. Berkovits, Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J Differ. Equ. 234 (2007), 289-310. doi:10.1016/j.jde.2006.11.012. · Zbl 1114.47049 · doi:10.1016/j.jde.2006.11.012
[8] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383-1406. doi:10.1137/050624522. · Zbl 1102.49010 · doi:10.1137/050624522
[9] Y.J. Cho and Y.Q. Chen, Topological Degree Theory and Applications, CRC Press, 2006. · Zbl 1095.47001
[10] X.L. Fan and D. Zhao, On the spaces L p(x) ( ) and W m,p(x) ( ), J Math Anal Appl. 263 (2001), 424-446. doi:10.1006/ jmaa.2000.7617. · Zbl 1028.46041 · doi:10.1006/jmaa.2000.7617
[11] P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Analysis 3(25) (2006), 205-222. doi:10.1007/s11118-006-9023-3. · Zbl 1120.46016 · doi:10.1007/s11118-006-9023-3
[12] E. Henriques and J.M. Urbano, Intrinsic scaling for PDEs with an exponential nonlinearity, Indiana Univ. Math. J. 55 (2006), 1701-1722. doi:10.1512/iumj.2006.55.2715. · Zbl 1105.35023 · doi:10.1512/iumj.2006.55.2715
[13] H. Kim and Y.H. Kim, Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents, Manuscripta Math. 147(1-2) (2015), 169-191. doi:10.1007/s00229-014-0718-2. · Zbl 1322.35009 · doi:10.1007/s00229-014-0718-2
[14] I.S. Kim and S.J. Hong, A topological degree for operators of generalized (S + ) type, Fixed Point Theory and Appl. 2015 (2015), 194. · Zbl 1361.47018
[15] O. Kováčik and J. Rákosník, On spaces L p(x) and W 1,p(x) , Czechoslovak Math. J. 41(4) (1991), 592-618. doi:10.21136/ CMJ.1991.102493. · Zbl 0784.46029 · doi:10.21136/CMJ.1991.102493
[16] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal. 105 (1989), 267-284. doi:10.1007/BF00251503. · Zbl 0667.49032 · doi:10.1007/BF00251503
[17] F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation, J Differ Equ. 249 (2010), 1674-1725. doi:10.1016/j.jde.2010.07.001. · Zbl 1207.35145 · doi:10.1016/j.jde.2010.07.001
[18] M.E. Ouaarabi, A. Abbassi and C. Allalou, Existence result for a Dirichlet problem governed by nonlinear degenerate elliptic equation in weighted Sobolev spaces, J. Elliptic Parabol Equ. 7(1) (2021), 221-242. doi:10.1007/s41808-021-00102-3. · Zbl 1472.35184 · doi:10.1007/s41808-021-00102-3
[19] M.E. Ouaarabi, A. Abbassi and C. Allalou, Existence result for a general nonlinear degenerate elliptic problems with measure datum in weighted Sobolev spaces, International Journal on Optimization and Applications 1(2) (2021), 1-9.
[20] M.E. Ouaarabi, C. Allalou and A. Abbassi, On the Dirichlet problem for some nonlinear degenerated elliptic equations with weight, in: 2021 7th International Conference on Optimization and Applications (ICOA), 2021, pp. 1-6.
[21] K.R. Rajagopal and M. Ruzicka, Mathematical modeling of electrorheological materials, Continuum Mechanics and Thermodynamics 13(1) (2001), 59-78. doi:10.1007/s001610100034. · Zbl 0971.76100 · doi:10.1007/s001610100034
[22] M.M. Rodrigues, Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)-Laplacian-like operators, Mediterr. J. Math. 9 (2012), 211-223. doi:10.1007/s00009-011-0115-y. · Zbl 1245.35061 · doi:10.1007/s00009-011-0115-y
[23] M. Ruzicka, Electrorheological Fuids: Modeling and Mathematical Theory, Springer Science & Business Media, 2000. · Zbl 0962.76001
[24] S. Shokooh and A. Neirameh, Existence results of infinitely many weak solutions for p(x)-Laplacian-like operators, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 78(4) (2016), 95-104. · Zbl 1513.35114
[25] C. Vetro, Weak solutions to Dirichlet boundary value problem driven by p(x)-Laplacian-like operator, Electron. J. Qual. Theory Differ. Equ. 2017(98) (2017), 1. doi:10.14232/ejqtde.2017.1.98. · Zbl 1413.35129 · doi:10.14232/ejqtde.2017.1.98
[26] E. Zeidler, Nonlinear Functional Analysis and Its Applications II/B, Springer-Verlag, New York, 1990. · Zbl 0684.47029
[27] D. Zhao, W.J. Qiang and X.L. Fan, On generalizerd Orlicz spaces L p(x) ( ), J. Gansu Sci. 9(2) (1996), 1-7.
[28] V.V.E. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 50(4) (1986), 675-710.
[29] V.V.E. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Mathematics of the USSR-Izvestiya 29(1) (1987), 33-66. doi:10.1070/IM1987v029n01ABEH000958. · Zbl 0599.49031 · doi:10.1070/IM1987v029n01ABEH000958
[30] Q.M. Zhou, On the superlinear problems involving p(x)-Laplacian-like operators without AR-condition, Nonlinear Anal. Real World Appl. 21 (2015), 161-169. doi:10.1016/j.nonrwa.2014.07.003. · Zbl 1304.35471 · doi:10.1016/j.nonrwa.2014.07.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.