×

A method for wrinkling analysis of creased space film under thermal environment. (English) Zbl 07906119

Summary: Deployable thin-film structure is an ideal requirement for space structures used for deep space exploration. One of the obstacles encountered by this structure is the problem of film surface accuracy caused by in-orbit temperature changes and plastic creases created by folding storage. This paper investigates how temperature and crease affect the wrinkling behaviors of thin films. A constitutive model accounting for temperature and crease effects is first derived, and by combining the maximum strain energy principle of tension field theory with the provided model, a numerical analysis method is established to analyze wrinkling films. The stress distribution and wrinkling direction of a rectangular film with or without crease under different temperatures are calculated using this method. Some important and interesting features are observed from the analysis results. The crease and temperature can affect the stress distribution and wrinkling angle of the wrinkling film. Furthermore, the wrinkling angle is more heavily affected by the crease, and the temperature’s impact on the wrinkling angle of the creased film is magnified. This work explains the physical mechanism of the effects of both crease and temperature on wrinkles in deployable film structures and provides a simulation method for studying the wrinkling characteristics of thin films, considering the effects of both the temperature and the crease.

MSC:

74Kxx Thin bodies, structures
74Sxx Numerical and other methods in solid mechanics
74-XX Mechanics of deformable solids
Full Text: DOI

References:

[1] Morozov, E.; Lopatin, A., Analysis and design of the flexible composite membrane stretched on the spacecraft solar array frame, Compos. Struct., 94, 10, 3106-3114, 2012 · doi:10.1016/j.compstruct.2012.04.023
[2] Fu, B.; Farouki, RT; Eke, FO, Equilibrium configuration of a bounded inextensible membrane subject to solar radiation pressure, Aerosp. Sci. Technol., 68, 552-560, 2017 · doi:10.1016/j.ast.2017.06.018
[3] Lu, G-Y; Zhou, J-Y; Cai, G-P; Fang, G-Q; Lv, L-L; Peng, F-J, Studies of thermal deformation and shape control of a space planar phased array antenna, Aerosp. Sci. Technol., 93, 2019 · doi:10.1016/j.ast.2019.105311
[4] Woo, K.; Nandukar, K.; Jenkins, CH, Effective modulus of creased thin membranes, J. Spacecr. Rocket., 45, 1, 19-26, 2008 · doi:10.2514/1.29282
[5] Woo, K.; Jenkins, CH, Analysis of crease-wrinkle interaction for thin sheets, J. Mech. Sci. Technol., 26, 3, 905-916, 2012 · doi:10.1007/s12206-011-1247-5
[6] Wong, W.; Pellegrino, S., Wrinkled membranes i: experiments, J. Mech. Mater. Struct., 1, 1, 3-25, 2006 · doi:10.2140/jomms.2006.1.3
[7] Wong, W.; Pellegrino, S., Wrinkled membranes ii: analytical models, J. Mech. Mater. Struct., 1, 1, 27-61, 2006 · doi:10.2140/jomms.2006.1.27
[8] Wong, W.; Pellegrino, S., Wrinkled membranes iii: numerical simulations, J. Mech. Mater. Struct., 1, 1, 63-95, 2006 · doi:10.2140/jomms.2006.1.63
[9] Wang, C.; Mao, L.; Du, X.; He, X., Influence parameter analysis and wrinkling control of space membrane structures, Mech. Adv. Mater. Struct., 17, 1, 49-59, 2009 · doi:10.1080/15376490903082862
[10] Wang, C.; Du, X.; Tan, H.; He, X., A new computational method for wrinkling analysis of gossamer space structures, Int. J. Solids Struct., 46, 6, 1516-1526, 2009 · Zbl 1236.74169 · doi:10.1016/j.ijsolstr.2008.11.018
[11] Senda, K.; Petrovic, M.; Nakanishi, K., Localized wrinkle behavior near fixed boundaries in flat and cylindrical membranes, J. Spacecr. Rocket., 52, 4, 1074-1090, 2015 · doi:10.2514/1.A33213
[12] Deng, X.; Xu, Y.; Clarke, C., Wrinkling modelling of space membranes subject to solar radiation pressure, Compos. B Eng., 157, 266-275, 2019 · doi:10.1016/j.compositesb.2018.08.088
[13] Wang, X.; Ma, J.; Law, SS; Yang, Q., Numerical analysis of wrinkle-influencing factors of thin membranes, Int J Solids Struct, 97-98, 458-474, 2016 · doi:10.1016/j.ijsolstr.2016.07.004
[14] Wang, X.; Law, SS; Yang, Q.; Yang, N., Numerical study on the dynamic properties of wrinkled membranes, Int J Solids Struct, 143, 125-143, 2018 · doi:10.1016/j.ijsolstr.2018.03.001
[15] Wang, X.; Yin, L.; Yang, Q., Numerical analysis of the wrinkling behavior of thin membranes, Arch. Appl. Mech., 89, 2361-2380, 2019 · doi:10.1007/s00419-019-01583-4
[16] Martins, A.; Silvestre, N.; Bebiano, R., A new modal theory for wrinkling analysis of stretched membranes, Int. J. Mech. Sci., 175, 2020 · doi:10.1016/j.ijmecsci.2020.105519
[17] Khalil, S.; Belaasilia, Y.; Hamdaoui, A.; Braikat, B.; Damil, N.; Potier-Ferry, M., A reduced-order modeling based on multi-scale method for wrinkles with variable orientations, Int. J. Solids Struct., 207, 89-103, 2020 · doi:10.1016/j.ijsolstr.2020.10.002
[18] Wang, FF; Wang, T.; Zhang, X.; Huang, Y.; Giorgio, I.; Xu, F., Wrinkling of twisted thin films, Int. J. Solids Struct., 262, 2023 · doi:10.1016/j.ijsolstr.2022.112075
[19] Tian, H.; Potier-Ferry, M.; Abed-Meraim, F., Buckling and wrinkling of thin membranes by using a numerical solver based on multivariate taylor series, Int. J. Solids Struct., 230, 2021 · doi:10.1016/j.ijsolstr.2021.111165
[20] Furuya, H., Miyazaki, Y., Takeuchi, H.: Deployment characteristics of creased membrane for solar sail on geometrical configuration and fold pattern. In: 44th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p. 1908. doi:10.2514/6.2003-1908 (2003)
[21] Satou, Y.; Furuya, H., Mechanical properties of z-fold membrane under elasto-plastic deformation, J Space Eng, 4, 1, 14-26, 2011 · doi:10.1299/spacee.4.14
[22] Tinoco, HA; Hutař, P.; Kruml, T.; Holzer, J., Modeling of elastoplastic behavior of freestanding square thin films under bulge testing, Acta Mech., 232, 7, 2715-2731, 2021 · Zbl 1486.74100 · doi:10.1007/s00707-021-02978-7
[23] Xia, Z.; Wang, C.; Tan, H., Elastoplastic folding behavior of membrane ribbon based on plane strain beam theory, Int. J. Solids Struct., 143, 167-174, 2018 · doi:10.1016/j.ijsolstr.2018.03.004
[24] Xia, Z.; Wang, C.; Tan, H., Quasi-static unfolding mechanics of a creased membrane based on a finite deformation crease-beam model, Int. J. Solids Struct., 207, 104-112, 2020 · doi:10.1016/j.ijsolstr.2020.10.008
[25] Satou, Y.; Furuya, H.; Kaida, S.; Miyashita, T., Visco-elasto-plastic behavior of creased space membrane, AIAA J., 60, 8, 4934-4942, 2022 · doi:10.2514/1.J060442
[26] Woo, K.; Jenkins, CH, Effect of crease orientation on wrinkle-crease interaction for thin membranes, J. Spacecr. Rocket., 50, 5, 1024-1034, 2013 · doi:10.2514/1.A32183
[27] Hossain, N., Woo, K., Jenkins, C.: Dynamic response of systematically creased membranes. In: 48th AIAA/ASME/ASCE/AHS/asc structures, structural dynamics, and materials conference, p. 1806. doi:10.2514/6.2007-1806 (2007)
[28] Papa, A.; Pellegrino, S., Systematically creased thin-film membrane structures, J. Spacecr. Rocket., 45, 1, 10-18, 2008 · doi:10.2514/1.18285
[29] Wang, C-G; Tan, H-F; He, X-D, Wrinkle-crease interaction behavior simulation of a rectangular membrane under shearing, Acta. Mech. Sin., 27, 4, 550-558, 2011 · Zbl 1270.74120 · doi:10.1007/s10409-011-0473-5
[30] Kamaliya, PK; Shukla, A.; Upadhyay, SH; Mallikarachchi, H., Analysing wrinkle interaction behaviour with z-fold crease pattern in thin-film planar membrane reflector, Int. J. Solids Struct., 254, 2022 · doi:10.1016/j.ijsolstr.2022.111902
[31] Kamaliya, PK; Upadhyay, SH; Mallikarachchi, H., Investigation of wrinkling behaviour in the creased thin-film laminates, Int. J. Mech. Mater. Des., 17, 4, 899-913, 2021 · doi:10.1007/s10999-021-09559-5
[32] Bai, J.; Shenoi, R.; Xiong, J., Thermal analysis of thin-walled deployable composite boom in simulated space environment, Compos. Struct., 173, 210-218, 2017 · doi:10.1016/j.compstruct.2017.04.022
[33] Li, J.; Yan, S.; Cai, R., Thermal analysis of composite solar array subjected to space heat flux, Aerosp. Sci. Technol., 27, 1, 84-94, 2013 · doi:10.1016/j.ast.2012.06.010
[34] Chiu, HC; Benson, RC; Fiscella, MD; Burns, SJ, Mechanical and thermal wrinkling of polymer membranes, J. Appl. Mech., 61, 1, 67-70, 1994 · doi:10.1115/1.2901423
[35] Blandinao, J., Johnston, J., Miles, J., Soplop, J.: Thin film membrane wrinkling due to mechanical and thermal loads. In: 19th AIAA applied aerodynamics conference, p. 1345. doi:10.2514/6.2001-1345 (2001)
[36] Deng, X.; Pellegrino, S., Wrinkling of orthotropic viscoelastic membranes, AIAA J., 50, 3, 668-681, 2012 · doi:10.2514/1.J051255
[37] Bosi, F.; Pellegrino, S., Nonlinear thermomechanical response and constitutive modeling of viscoelastic polyethylene membranes, Mech. Mater., 117, 9-21, 2018 · doi:10.1016/j.mechmat.2017.10.004
[38] Orszulik, RR; Shan, J., Fuzzy logic active flatness control of a space membrane structure, Acta Astronaut., 77, 68-76, 2012 · doi:10.1016/j.actaastro.2012.03.008
[39] Attipou, K.; Hu, H.; Mohri, F.; Potier-Ferry, M.; Belouettar, S., Thermal wrinkling of thin membranes using a Fourier-related double scale approach, Thin-Walled Struct, 94, 532-544, 2015 · doi:10.1016/j.tws.2015.04.034
[40] Kang, S.; Im, S., Finite element analysis of wrinkling membranes, J. Appl. Mech., 64, 2, 263-269, 1997 · Zbl 0899.73542 · doi:10.1115/1.2787302
[41] Lu, K.; Accorsi, M.; Leonard, J., Finite element analysis of membrane wrinkling, Int. J. Numer. Meth. Eng., 50, 5, 1017-1038, 2001 · Zbl 0994.74073 · doi:10.1002/1097-0207(20010220)50:5<1017::AID-NME47>3.0.CO;2-2
[42] Lee, E-S; Youn, S-K, Finite element analysis of wrinkling membrane structures with large deformations, Finite Elem. Anal. Des., 42, 8, 780-791, 2006 · doi:10.1016/j.finel.2006.01.004
[43] Mansfield, EH, The bending and stretching of plates, 1989, Cambridge: Cambridge University Press, Cambridge · Zbl 0755.73003 · doi:10.1017/CBO9780511525193
[44] Rainwater, E.; Smith, M., Ultra high altitude balloons for medium-to-large payloads, Adv. Space Res., 33, 10, 1648-1652, 2004 · doi:10.1016/j.asr.2003.07.037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.