×

Differential algebra methods for the study of the structural identifiability of rational function state-space models in the biosciences. (English) Zbl 1006.92003

Summary: In this paper methods from differential algebra are used to study the structural identifiability of biological and pharmacokinetics models expressed in state-space form and with a structure given by rational functions. The focus is on the examples presented and on the application of efficient, automatic methods to test for structural identifiability for various input-output experiments. Differential algebra methods are coupled with Gröbner bases, Lie derivatives and the Taylor series expansion in order to obtain efficient algorithms. In particular, an upper bound on the number of derivatives needed for the Taylor series approach for a structural identifiability analysis of rational function models is given.

MSC:

92B05 General biology and biomathematics
13N15 Derivations and commutative rings
93B30 System identification
Full Text: DOI

References:

[1] Benson, W. W., (The Foundation of Chemical Kinetics. The Foundation of Chemical Kinetics, McGraw-Hill Series in Advanced Chemistry (1960), McGraw-Hill: McGraw-Hill New York)
[2] F. Boulier, D. Lazard, F. Ollivier, M. Petitot, Representation for the radical of a finitely generated differential ideal, in: A.H.M. Levelt (Ed.), ISSAC’95, 1995, p. 158; F. Boulier, D. Lazard, F. Ollivier, M. Petitot, Representation for the radical of a finitely generated differential ideal, in: A.H.M. Levelt (Ed.), ISSAC’95, 1995, p. 158 · Zbl 0911.13011
[3] Chappell, M. J.; Godfrey, K. R.; Vajda, S., Global identifiability of the parameters of nonlinear systems with specified inputs: a comparison of methods, Math. Biosci., 102, 41 (1990) · Zbl 0789.93039
[4] Cox, D.; Little, J.; O’Shea, D., Ideals, Varieties and Algorithms (1996), Springer: Springer New York · Zbl 0861.13012
[5] D’Angió, L.; Saccomani, M. P.; Audoly, S.; Bellu, G.; Cobelli, C., A new algorithm to test global identifiability of physiological nonlinear models, (Linkens, D. A.; Carson, E., Proceedings of the 3rd IFAC Symposium on Modelling and Control in Biomedical Systems (1997), Elsevier: Elsevier Oxford), 259 · Zbl 0914.92005
[6] S. Diop, M. Fliess, On nonlinear observability, in: C. Commault (Ed.), Proceedings of First European Control Conference, Hermes, Grenoble, 1991, p. 152; S. Diop, M. Fliess, On nonlinear observability, in: C. Commault (Ed.), Proceedings of First European Control Conference, Hermes, Grenoble, 1991, p. 152
[7] D. Döpfer, Recurrent clinical Escherichia coli; D. Döpfer, Recurrent clinical Escherichia coli
[8] Fliess, M., Nonlinear control theory and differential algebra, (Byrnes, I.; Kurzhanski, A., Modelling and Adaptive Control. Modelling and Adaptive Control, Lecture Notes in Control and Information Science (1988), Springer: Springer Berlin), 134 · Zbl 0652.93025
[9] Fliess, M.; Glad, S. T., An algebraic approach to linear and nonlinear control, (Trentelman, H. L.; Willems, J. C., Essays on Control: Perspectives in the Theory and its Applications (1993), Birkhäuser: Birkhäuser Boston, MA), 223 · Zbl 0838.93021
[10] K. Forsman, S.T. Glad, Constructive algebraic geometry in nonlinear control, in: Proceedings of the 29th CDC, 1990, p. 2825; K. Forsman, S.T. Glad, Constructive algebraic geometry in nonlinear control, in: Proceedings of the 29th CDC, 1990, p. 2825 · Zbl 0825.93108
[11] Glad, S. T., Differential algebraic modelling of nonlinear systems, (Kaahoek, M. A.; van Schuppen, J. H.; Ran, A. C.M., Realization and Modelling in System Theory, MTSN’89, 1 (1990), Birkhäuser: Birkhäuser Boston, MA), 97 · Zbl 0726.93040
[12] Godfrey, K. R., Compartmental Models and their Application (1983), Academic Press: Academic Press London
[13] Godfrey, K. R.; DiStefano, J. J., Identifiability of model parameters, (Walter, E., Identifiability of Parametric Models (1987), Pergamon: Pergamon Oxford), 1 · Zbl 0648.93009
[14] Holmberg, A., On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities, Math. Biosci., 62, 23 (1982) · Zbl 0489.92021
[15] Kaplansky, I., An Introduction to Differential Algebra (1957), Hermann: Hermann Paris · Zbl 0083.03301
[16] Kolchin, E. R., Differential Algebra and Algebraic Groups (1973), Academic Press: Academic Press New York · Zbl 0264.12102
[17] Ljung, L.; Glad, S. T., On global identifiability for arbitrary model parametrizations, Automatica, 30, 265 (1994) · Zbl 0795.93026
[18] G. Margaria, Applications of differential algebra to the structural identifiability of non linear models, PhD thesis, Department of Mathematics, Politecnico di Torino, 2000; G. Margaria, Applications of differential algebra to the structural identifiability of non linear models, PhD thesis, Department of Mathematics, Politecnico di Torino, 2000 · Zbl 1053.13503
[19] Murray, J. D., Mathematical Biology (1989), Springer: Springer New York · Zbl 0682.92001
[20] F. Ollivier, Le problème de l’identifiabilité structurelle globale: approche théorique, méthodes effectives et bornes de complexité, PhD thesis, GAGE, Centre de Mathématiques, École Polytechnique, 1990; F. Ollivier, Le problème de l’identifiabilité structurelle globale: approche théorique, méthodes effectives et bornes de complexité, PhD thesis, GAGE, Centre de Mathématiques, École Polytechnique, 1990
[21] F. Ollivier, Identifiabilité des systémes, Technical Report, GAGE, Centre de Mathématiques, École Polytechnique, 1998; F. Ollivier, Identifiabilité des systémes, Technical Report, GAGE, Centre de Mathématiques, École Polytechnique, 1998
[22] Ritt, J. F., Differential Algebra (1950), AMS: AMS New York · Zbl 0037.18501
[23] Rubinov, S. I., Mathematical problems in the biological sciences, (Regional Conf. Ser. Appl. Math., vol. 10 (1973), SIAM: SIAM Philadelphia, PA) · Zbl 0269.92001
[24] Sadik, B., A bound for the order of characteristic set elements of an ordinary prime differential ideal and some application, Appl. Alg. Eng. Commun. Comput., 10, 251 (2000) · Zbl 1011.12005
[25] Schmidt, K.; Mies, G.; Sokoloff, L., Model of kinetic behaviour of deoxyglucose in heterogeneous tissues in brain: a reinterpretation of the significance of parameters fitted to homogeneous tissue models, J. Cereb. Blood Flow Metab., 11, 10 (1991)
[26] S. Vajda, Structural identifiability of linear, bilinear, polynomial and rational systems, in: L. Ljung, A. Titli (Eds.), Proceedings of the 9th IFAC World Congress, Budapest, Hungary, 1984, p. 107; S. Vajda, Structural identifiability of linear, bilinear, polynomial and rational systems, in: L. Ljung, A. Titli (Eds.), Proceedings of the 9th IFAC World Congress, Budapest, Hungary, 1984, p. 107
[27] Vajda, S., Identifiability of polynomial systems: structural and numerical aspects, (Walter, E., Identifiability of Parametric Models (1987), Pergamon: Pergamon Oxford), 42 · Zbl 0649.93017
[28] Walter, E., Identifiability of State Space Models (1982), Springer: Springer Berlin · Zbl 0508.93001
[29] Wang, D., An implementation of the characteristic set method in Maple, (Wang, D.; Pfalzgraf, J., Automated Practical Reasoning. Algebraic Approaches (1995), Springer: Springer Vienna), 187 · Zbl 0837.68110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.