×

Reconnectads. (English) Zbl 07873568

Summary: We introduce a new operad-like structure that we call a reconnectad; the “input” of an element of a reconnectad is a finite simple graph, rather than a finite set, and “compositions” of elements are performed according to the notion of the reconnected complement of a subgraph. The prototypical example of a reconnectad is given by the collection of toric varieties of graph associahedra of Carr and Devadoss, with the structure operations given by inclusions of orbits closures. We develop the general theory of reconnectads, and use it to study the “wonderful reconnectad” assembled from homology groups of complex toric varieties of graph associahedra.

MSC:

14M25 Toric varieties, Newton polyhedra, Okounkov bodies
18M70 Algebraic operads, cooperads, and Koszul duality
18M75 Topological and simplicial operads

Software:

operads

References:

[1] Barnard, Emily; McConville, Thomas, Lattices from graph associahedra and subalgebras of the Malvenuto-Reutenauer algebra, Algebra Universalis, 82, 1, 53 p. pp., 2021 · Zbl 1484.06021 · doi:10.1007/s00012-020-00689-z
[2] Batanin, Michael; Markl, Martin, Operadic categories and duoidal Deligne’s conjecture, Adv. Math., 285, 1630-1687, 2015 · Zbl 1360.18009 · doi:10.1016/j.aim.2015.07.008
[3] Beineke, Lowell W., Characterizations of derived graphs, J. Combinatorial Theory, 9, 129-135, 1970 · Zbl 0202.55702 · doi:10.1016/S0021-9800(70)80019-9
[4] Bergeron, F.; Labelle, G.; Leroux, P., Combinatorial species and tree-like structures, 67, xx+457 p. pp., 1998, Cambridge University Press, Cambridge · Zbl 0888.05001
[5] Bloom, Jonathan M., A link surgery spectral sequence in monopole Floer homology, Adv. Math., 226, 4, 3216-3281, 2011 · Zbl 1228.57016 · doi:10.1016/j.aim.2010.10.014
[6] Bott, Raoul; Taubes, Clifford, On the self-linking of knots, J. Math. Phys., 35, 10, 5247-5287, 1994 · Zbl 0863.57004 · doi:10.1063/1.530750
[7] Bowman, V. J., Permutation polyhedra, SIAM J. Appl. Math., 22, 580-589, 1972 · Zbl 0246.90030 · doi:10.1137/0122054
[8] Braden, Tom; Huh, June; Matherne, Jacob P.; Proudfoot, Nicholas; Wang, Botong, A semi-small decomposition of the Chow ring of a matroid, Adv. Math., 409, 49 p. pp., 2022 · Zbl 1509.14012 · doi:10.1016/j.aim.2022.108646
[9] Bremner, Murray R.; Dotsenko, Vladimir, Algebraic operads: An algorithmic companion, xvii+365 p. pp., 2016, CRC Press, Boca Raton, FL · Zbl 1350.18001 · doi:10.1201/b20061
[10] Carr, Michael P.; Devadoss, Satyan L., Coxeter complexes and graph-associahedra, Topology Appl., 153, 12, 2155-2168, 2006 · Zbl 1099.52001 · doi:10.1016/j.topol.2005.08.010
[11] Choi, Suyoung; Park, Hanchul, A new graph invariant arises in toric topology, J. Math. Soc. Japan, 67, 2, 699-720, 2015 · Zbl 1326.57044 · doi:10.2969/jmsj/06720699
[12] Coron, Basile, Matroids, Feynman categories, and Koszul duality, 2022
[13] Danilov, V. I., The geometry of toric varieties, Uspekhi Mat. Nauk, 33, 2-200, 85-134, 247, 1978 · Zbl 0425.14013
[14] De Concini, C.; Procesi, C., Wonderful models of subspace arrangements, Selecta Math. (N.S.), 1, 3, 459-494, 1995 · Zbl 0842.14038 · doi:10.1007/BF01589496
[15] Deligne, Pierre, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math., 40, 5-57, 1971 · Zbl 0219.14007 · doi:10.1007/BF02684692
[16] Došen, Kosta; Petrić, Zoran, Shuffles and concatenations in the construction of graphs, Math. Structures Comput. Sci., 22, 6, 904-930, 2012 · Zbl 1266.05103 · doi:10.1017/S0960129511000648
[17] Dotsenko, Vladimir, Word operads and admissible orderings, Appl. Categ. Structures, 28, 4, 595-600, 2020 · Zbl 1442.18045 · doi:10.1007/s10485-020-09591-0
[18] Dotsenko, Vladimir; Khoroshkin, Anton, Gröbner bases for operads, Duke Math. J., 153, 2, 363-396, 2010 · Zbl 1208.18007 · doi:10.1215/00127094-2010-026
[19] Dotsenko, Vladimir; Khoroshkin, Anton, Quillen homology for operads via Gröbner bases, Doc. Math., 18, 707-747, 2013 · Zbl 1278.18018 · doi:10.4171/dm/412
[20] Dotsenko, Vladimir; Shadrin, Sergey; Tamaroff, Pedro, Generalized cohomological field theories in the higher order formalism, Comm. Math. Phys., 399, 3, 1439-1500, 2023 · Zbl 1511.18026 · doi:10.1007/s00220-022-04577-6
[21] Dotsenko, Vladimir; Shadrin, Sergey; Vallette, Bruno, Toric varieties of Loday’s associahedra and noncommutative cohomological field theories, J. Topol., 12, 2, 463-535, 2019 · Zbl 1421.18002 · doi:10.1112/topo.12091
[22] Escobar, Laura, Brick manifolds and toric varieties of brick polytopes, Electron. J. Combin., 23, 2, 18 p. pp., 2016 · Zbl 1368.14064
[23] Eur, Christopher; Huh, June; Larson, Matt, Stellahedral geometry of matroids, Forum Math. Pi, 11, 48 p. pp., 2023 · Zbl 1528.05011 · doi:10.1017/fmp.2023.24
[24] Feichtner, Eva Maria; Sturmfels, Bernd, Matroid polytopes, nested sets and Bergman fans, Port. Math. (N.S.), 62, 4, 437-468, 2005 · Zbl 1092.52006
[25] Feichtner, Eva Maria; Yuzvinsky, Sergey, Chow rings of toric varieties defined by atomic lattices, Invent. Math., 155, 3, 515-536, 2004 · Zbl 1083.14059 · doi:10.1007/s00222-003-0327-2
[26] Ferreira da Rosa, Rodrigo; Jensen, David; Ranganathan, Dhruv, Toric graph associahedra and compactifications of \(M_{0,n}\), J. Algebraic Combin., 43, 1, 139-151, 2016 · Zbl 1337.14027 · doi:10.1007/s10801-015-0629-7
[27] Forcey, Stefan; Ronco, María, Algebraic structures on graph associahedra, J. Lond. Math. Soc. (2), 106, 2, 1189-1231, 2022 · Zbl 1535.05063 · doi:10.1112/jlms.12596
[28] Fulton, William, Introduction to toric varieties, 131, xii+157 p. pp., 1993, Princeton University Press, Princeton, NJ · Zbl 0813.14039 · doi:10.1515/9781400882526
[29] Gelfand, I. M.; Kapranov, M. M.; Zelevinsky, A. V., Discriminants, resultants and multidimensional determinants, x+523 p. pp., 2008, Birkhäuser Boston, Inc., Boston, MA · Zbl 1138.14001
[30] Getzler, E., Two-dimensional topological gravity and equivariant cohomology, Comm. Math. Phys., 163, 3, 473-489, 1994 · Zbl 0806.53073 · doi:10.1007/BF02101459
[31] Getzler, E., The moduli space of curves (Texel Island, 1994), 129, Operads and moduli spaces of genus \(0\) Riemann surfaces, 199-230, 1995, Birkhäuser Boston, Boston, MA · Zbl 0851.18005 · doi:10.1007/978-1-4612-4264-2_8
[32] Hoffbeck, Eric, A Poincaré-Birkhoff-Witt criterion for Koszul operads, Manuscripta Math., 131, 1-2, 87-110, 2010 · Zbl 1207.18009 · doi:10.1007/s00229-009-0303-2
[33] Joyal, André, Une théorie combinatoire des séries formelles, Adv. in Math., 42, 1, 1-82, 1981 · Zbl 0491.05007 · doi:10.1016/0001-8708(81)90052-9
[34] Kaufmann, Ralph M.; Ward, Benjamin C., Feynman categories, Astérisque, 387, vii+161, 2017 · Zbl 1434.18001
[35] Kaufmann, Ralph M.; Ward, Benjamin C., Koszul Feynman categories, Proc. Amer. Math. Soc., 151, 8, 3253-3267, 2023 · Zbl 1519.18014 · doi:10.1090/proc/16372
[36] Loday, Jean-Louis; Ronco, María, Permutads, J. Combin. Theory Ser. A, 120, 2, 340-365, 2013 · Zbl 1258.05126 · doi:10.1016/j.jcta.2012.08.005
[37] Loday, Jean-Louis; Vallette, Bruno, Algebraic operads, 346, xxiv+634 p. pp., 2012, Springer, Heidelberg · Zbl 1260.18001 · doi:10.1007/978-3-642-30362-3
[38] Losev, A.; Manin, Y., New moduli spaces of pointed curves and pencils of flat connections, Michigan Math. J., 48, 443-472, 2000 · Zbl 1078.14536 · doi:10.1307/mmj/1030132728
[39] Losev, A.; Polyubin, I., Commutativity equations and dressing transformations, JETP Lett., 77, 53-57, 2003 · doi:10.1134/1.1564219
[40] Lysov, V., Anticommutativity equation in topological quantum mechanics, JETP Lett., 76, 724-727, 2002 · doi:10.1134/1.155621
[41] Manin, Yuri I., Frobenius manifolds, quantum cohomology, and moduli spaces, 47, xiv+303 p. pp., 1999, American Mathematical Society, Providence, RI · Zbl 0952.14032 · doi:10.1090/coll/047
[42] Markl, Martin, Distributive laws and Koszulness, Ann. Inst. Fourier (Grenoble), 46, 2, 307-323, 1996 · Zbl 0853.18005 · doi:10.5802/aif.1516
[43] Ma’u, Sikimeti, Quilted strips, graph associahedra, and \(A_\infty n\)-modules, Algebr. Geom. Topol., 15, 2, 783-799, 2015 · Zbl 1327.14135 · doi:10.2140/agt.2015.15.783
[44] Petersen, Dan, The operad structure of admissible \(G\)-covers, Algebra Number Theory, 7, 8, 1953-1975, 2013 · Zbl 1305.18037 · doi:10.2140/ant.2013.7.1953
[45] Polishchuk, Alexander; Positselski, Leonid, Quadratic algebras, 37, xii+159 p. pp., 2005, American Mathematical Society, Providence, RI · Zbl 1145.16009 · doi:10.1090/ulect/037
[46] Postnikov, Alex; Reiner, Victor; Williams, Lauren, Faces of generalized permutohedra, Doc. Math., 13, 207-273, 2008 · Zbl 1167.05005 · doi:10.4171/dm/248
[47] Postnikov, Alexander, Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN, 6, 1026-1106, 2009 · Zbl 1162.52007 · doi:10.1093/imrn/rnn153
[48] Procesi, C., Mots, The toric variety associated to Weyl chambers, 153-161, 1990, Hermès, Paris · Zbl 1177.14090
[49] Rains, Eric M., The homology of real subspace arrangements, J. Topol., 3, 4, 786-818, 2010 · Zbl 1213.14102 · doi:10.1112/jtopol/jtq027
[50] Shadrin, Sergey; Zvonkine, Dimitri, A group action on Losev-Manin cohomological field theories, Ann. Inst. Fourier (Grenoble), 61, 7, 2719-2743, 2011 · Zbl 1275.53085 · doi:10.5802/aif.2791
[51] Stasheff, James Dillon, Homotopy associativity of \(H\)-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963), 275-292; ibid., 108, 293-312, 1963 · Zbl 0114.39402 · doi:10.1090/s0002-9947-1963-0158400-5
[52] Tamari, Dov, The algebra of bracketings and their enumeration, Nieuw Arch. Wisk. (3), 10, 131-146, 1962 · Zbl 0109.24502
[53] Toledano Laredo, Valerio, Quasi-Coxeter algebras, Dynkin diagram cohomology, and quantum Weyl groups, Int. Math. Res. Pap. IMRP, 167 p. pp., 2008 · Zbl 1169.17010 · doi:10.1093/imrp/rpn009
[54] Vallette, Bruno, Free monoid in monoidal abelian categories, Appl. Categ. Structures, 17, 1, 43-61, 2009 · Zbl 1200.18003 · doi:10.1007/s10485-008-9130-y
[55] Van der Laan, P., Coloured Koszul duality and strongly homotopy operads, 2003
[56] Ward, Benjamin C., Massey products for graph homology, Int. Math. Res. Not. IMRN, 11, 8086-8161, 2022 · Zbl 1493.18020 · doi:10.1093/imrn/rnaa346
[57] Zelevinsky, Andrei, Nested complexes and their polyhedral realizations, Pure Appl. Math. Q., 2, 3, 655-671, 2006 · Zbl 1109.52010 · doi:10.4310/PAMQ.2006.v2.n3.a3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.