×

Algebraic coherent confluence and higher globular Kleene algebras. (English) Zbl 1508.18018

This paper combines the two lines of research on Kleene-algebraic and higher rewriting into a unified framework. It is shown how some calculational confluence proofs in Kleene algebras, such as the Church-Rosser theorem and Newmann’s lemma, are to be extended to coherent confluence proofs. To this end, the authors introduce higher globular Kleene algebras with many compositions as well as domain and codomain operations, which generalize both modal Kleene algebras [J. Desharnais and G. Struth, Sci. Comput. Program. 76, No. 3, 181–203 (2011; Zbl 1211.68242)] and concurrent Kleene algebras [T. Hoare et al., J. Log. Algebr. Program. 80, No. 6, 266–296 (2011; Zbl 1278.68176)]. These generalized results are related to the point-wise approach to higher rewriting systems described by polygraphs. The principal contribution of this paper is the provision of a point-free algebraic approach to coherence in higher rewriting.
The synopsis of the paper goes as follows:
§ 2
introduces the relevant notions of higher rewriting, multifurcating into four subsections. §2.1 and §2.2 recall the definition of polygraphs and their properties as rewriting systems presenting higher categories. §2.3 introduces the notion of confluence filler for polygraphs with respect to cellular extensions, giving point-wise proofs of the coherent version of the Church-Rosser theorems and Newman’s lemma in the polygraph setting. §2.4 relates the confluence filler property to a more standard coherent confluence property [Y. Guiraud et al., Math. Z. 293, No. 1–2, 113–179 (2019; Zbl 1423.16008)].
§ 3
introduces higher globular Kleene algebras, multifurcating into three subsections. §3.1 lists the axioms of modal Kleene algebra [J. Desharnais and G. Struth, Sci. Comput. Program. 76, No. 3, 181–203 (2011; Zbl 1211.68242)], giving two of its main models. Its relational model provides the original intuition for defining modal operators based on relational domain and codomain operations over Kripke frames. Its path model, which can be defined over any graph, forms the basis for using modal Kleene algebras in higher rewriting. §3.2 defines \(n\)-dimensional dioids, rigging these in domain, codomain and star operations to obtain modal n-Kleene algebras. §3.3 constructs a higher path algebra associated to an \(n\)-polygraph with a cellular extension as a model of this structure.
§ 4
presents algebraic proofs of the coherent Church-Rosser theorem and Newman’s lemma in higher globular Kleene algebras multifurcating into three subsections. §4.1 first revisits abstract rewriting properties formulated in modal Kleene algebras [J. Desharnais et al., Log. Methods Comput. Sci. 7, No. 1, Paper No. 1, 29 p. (2011; Zbl 1214.68185); G. Struth, Lect. Notes Comput. Sci. 2561, 276–290 (2002; Zbl 1027.68071); J. Log. Algebr. Program. 66, No. 2, 239–270 (2006; Zbl 1086.68068)]. The authors then formalize notions from higher rewriting, introducing fillers in the setting of globular modal \(n\)-Kleene algebras, which correspond to the notion of fillers for polygraphs. They also define the notion of whiskering in modal \(n\)-Kleene algebras, describing the properties thereof. §4.2 esatablishes the coherent Church-Rosser theorem, first in Proposition 4.1 using classical induction and then in Theorem 4.2 using only the induction axioms for the Kleene star. §4.3 defines the notions of termination and well-foundedness for globular modal \(p\)-Boolean Kleene algebras, establishing Theorem 4.4, the coherent Newmann’s lemma.

MSC:

18N30 Strict omega-categories, computads, polygraphs
03B70 Logic in computer science
68Q42 Grammars and rewriting systems

References:

[1] S. L. Bloom, Z.Ésik, and Gh. Stefanescu. Notes on equational theories of relations. Algebra Universalis, 33(1):98-126, 1995. doi:10.1007/BF01190768. · Zbl 0834.08004 · doi:10.1007/BF01190768
[2] Ronald Book and Friedrich Otto. String-rewriting systems. Springer-Verlag, 1993. · Zbl 0832.68061
[3] Albert Burroni. Higher-dimensional word problems with applications to equational logic. Theor. Comput. Sci., 115(1):43-62, 1993. doi:10.1016/0304-3975(93)90054-W. · Zbl 0791.08004 · doi:10.1016/0304-3975(93)90054-W
[4] Albert Burroni. Higher-dimensional word problems with applications to equational logic. Theoret. Comput. Sci., 115(1):43-62, 1993. 4th Summer Conference on Category Theory and Computer Science (Paris, 1991). doi:10.1016/0304-3975(93)90054-W. · Zbl 0791.08004 · doi:10.1016/0304-3975(93)90054-W
[5] Cyrille Chenavier, Benjamin Dupont, and Philippe Malbos. Confluence of algebraic rewriting systems. Mathematical Structures in Computer Science, 2022. doi:10.1017/S0960129521000426. · Zbl 1512.68126 · doi:10.1017/S0960129521000426
[6] Cameron Calk, Eric Goubault, and Philippe Malbos. Abstract strategies and coherence. In 19th International Conference on Relational and Algebraic Methods in Computer Science RAMICS 2021, volume 13027 of Lecture Notes in Comput. Sci., pages 108-125. Springer, Berlin, Marseille, France, 2021. doi:10.1007/978-3-030-88701-8_7. · Zbl 1517.68155 · doi:10.1007/978-3-030-88701-8_7
[7] Henk Doornbos, Roland Carl Backhouse, and Jaap van der Woude. A calculational approach to mathematical induction. Theor. Comput. Sci., 179(1-2):103-135, 1997. · Zbl 0901.68124
[8] Benjamin Dupont and Philippe Malbos. Coherent confluence modulo relations and double groupoids. Journal of Pure and Applied Algebra, 226(10):107037, 2022. doi:https://doi.org/ 10.1016/j.jpaa.2022.107037. · Zbl 1492.18009 · doi:10.1016/j.jpaa.2022.107037
[9] Jules Desharnais, Bernhard Möller, and Georg Struth. Kleene algebra with domain. ACM Trans. Comput. Log., 7(4):798-833, 2006. doi:10.1145/1183278.1183285. 9:42 · Zbl 1367.68205 · doi:10.1145/1183278.1183285
[10] C. Calk, E. Goubault, P. Malbos, and G. Struth Vol. 18:4
[11] Jules Desharnais, Bernhard Möller, and Georg Struth. Algebraic notions of termination. Log. Methods Comput. Sci., 7(1), 2011. doi:10.2168/LMCS-7(1:1)2011. · Zbl 1214.68185 · doi:10.2168/LMCS-7(1:1)2011
[12] Jules Desharnais and Georg Struth. Internal axioms for domain semirings. Sci. Comput. Program., 76(3):181-203, 2011. doi:10.1016/j.scico.2010.05.007. · Zbl 1211.68242 · doi:10.1016/j.scico.2010.05.007
[13] Benjamin Dupont. Rewriting modulo isotopies in Khovanov-Lauda-Rouquier’s categorification of quantum groups. Adv. Math., 378:Paper No. 107524, 75, 2021. doi:10.1016/j.aim.2020. 107524. · Zbl 1457.18022 · doi:10.1016/j.aim.2020.107524
[14] Stéphane Gaussent, Yves Guiraud, and Philippe Malbos. Coherent presentations of Artin monoids. Compos. Math., 151(5):957-998, 2015. doi:10.1112/S0010437X14007842. · Zbl 1398.20069 · doi:10.1112/S0010437X14007842
[15] Yves Guiraud, Eric Hoffbeck, and Philippe Malbos. Convergent presentations and poly-graphic resolutions of associative algebras. Math. Z., 293(1-2):113-179, 2019. doi:10.1007/ s00209-018-2185-z. · Zbl 1423.16008 · doi:10.1007/s00209-018-2185-z
[16] Yves Guiraud and Philippe Malbos. Higher-dimensional categories with finite derivation type. Theory Appl. Categ., 22(18):420-478, 2009. · Zbl 1190.18002
[17] Yves Guiraud and Philippe Malbos. Coherence in monoidal track categories. Math. Structures Comput. Sci., 22(6):931-969, 2012. doi:10.1017/S096012951100065X. · Zbl 1264.18007 · doi:10.1017/S096012951100065X
[18] Yves Guiraud and Philippe Malbos. Higher-dimensional normalisation strategies for acyclicity. Adv. Math., 231(3-4):2294-2351, 2012. doi:10.1016/j.aim.2012.05.010. · Zbl 1266.18008 · doi:10.1016/j.aim.2012.05.010
[19] Yves Guiraud and Philippe Malbos. Polygraphs of finite derivation type. Math. Structures Comput. Sci., 28(2):155-201, 2018. doi:10.1017/S0960129516000220. · Zbl 1396.18004 · doi:10.1017/S0960129516000220
[20] Yves Guiraud, Philippe Malbos, and Samuel Mimram. A homotopical completion procedure with applications to coherence of monoids. In 24th International Conference on Rewriting Techniques and Applications, volume 21 of LIPIcs. Leibniz Int. Proc. Inform., pages 223-238. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2013. · Zbl 1356.68120
[21] Yves Guiraud. Termination orders for three-dimensional rewriting. J. Pure Appl. Algebra, 207(2):341-371, 2006. doi:10.1016/j.jpaa.2005.10.011. · Zbl 1096.68075 · doi:10.1016/j.jpaa.2005.10.011
[22] Nohra Hage and Philippe Malbos. Knuth’s coherent presentations of plactic monoids of type A. Algebr. Represent. Theory, 20(5):1259-1288, 2017. · Zbl 1422.20022
[23] Nohra Hage and Philippe Malbos. Chinese syzygies by insertions. Semigroup Forum, 104(1):88-108, 2022. doi:10.1007/s00233-021-10244-4. · Zbl 1526.20079 · doi:10.1007/s00233-021-10244-4
[24] Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent Kleene algebra and its foundations. J. Log. Algebr. Program., 80(6):266-296, 2011. doi:10.1016/j.jlap.2011.04. 005. · Zbl 1278.68176 · doi:10.1016/j.jlap.2011.04.005
[25] Peter Höfner and Georg Struth. Algebraic notions of nontermination: omega and divergence in idempotent semirings. J. Log. Algebr. Program., 79(8):794-811, 2010. doi:10.1016/j.jlap. 2010.07.016. · Zbl 1205.68111 · doi:10.1016/j.jlap.2010.07.016
[26] Gérard Huet. Confluent reductions: abstract properties and applications to term rewriting systems. J. Assoc. Comput. Mach., 27(4):797-821, 1980. doi:10.1145/322217.322230. · Zbl 0458.68007 · doi:10.1145/322217.322230
[27] Bjarni Jónsson and Alfred Tarski. Boolean algebras with operators. I. Amer. J. Math., 73:891-939, 1951. doi:10.2307/2372123. · Zbl 0045.31505 · doi:10.2307/2372123
[28] Dexter Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst., 19(3):427-443, 1997.
[29] Tom Leinster. Higher operads, higher categories, volume 298 of London Mathematical So-ciety Lecture Note Series. Cambridge University Press, Cambridge, 2004. doi:10.1017/ CBO9780511525896. · Zbl 1160.18001 · doi:10.1017/CBO9780511525896
[30] François Métayer. Resolutions by polygraphs. Theory Appl. Categ., 11(7):148-184, 2003. · Zbl 1020.18001
[31] Samuel Mimram. Towards 3-dimensional rewriting theory. Log. Methods Comput. Sci., 10(2):2:1, 47, 2014. · Zbl 1314.68172
[32] Saunders Mac Lane. Natural associativity and commutativity. Rice Univ. Studies, 49(4):28-46, 1963. · Zbl 0244.18008
[33] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998. · Zbl 0906.18001
[34] Maxwell Newman. On theories with a combinatorial definition of “equivalence”. Ann. of Math. (2), 43(2):223-243, 1942. · Zbl 0060.12501
[35] Vol. 18:4 ALGEBRAIC COHERENT CONFLUENCE AND HIGHER GLOBULAR KLEENE ALGEBRAS 9:43 · Zbl 1508.18018
[36] Maurice Nivat. Congruences parfaites et quasi-parfaites. In Séminaire P. Dubreil, 25e année (1971/72), Algèbre, Fasc. 1, Exp. No. 7, page 9. Secrétariat Mathématique, Paris, 1973. · Zbl 0338.02018
[37] Craig C. Squier, Friedrich Otto, and Yuji Kobayashi. A finiteness condition for rewriting systems. Theoret. Comput. Sci., 131(2):271-294, 1994. doi:10.1016/0304-3975(94)90175-9. · Zbl 0863.68082 · doi:10.1016/0304-3975(94)90175-9
[38] James Dillon Stasheff. Homotopy associativity of H-spaces. I, II. Trans. Amer. Math. Soc. 108: 275-292; ibid., 108:293-312, 1963. · Zbl 0114.39402
[39] Ross Street. Limits indexed by category-valued 2-functors. J. Pure Appl. Algebra, 8(2):149-181, 1976. · Zbl 0335.18005
[40] Georg Struth. Calculating Church-Rosser proofs in Kleene algebra. In Relational methods in computer science, volume 2561 of Lecture Notes in Comput. Sci., pages 276-290. Springer, 2002. doi:10.1007/3-540-36280-0_19. · Zbl 1027.68071 · doi:10.1007/3-540-36280-0_19
[41] Georg Struth. Abstract abstract reduction. J. Log. Algebr. Program., 66(2):239-270, 2006. doi:10.1016/j.jlap.2005.04.001. · Zbl 1086.68068 · doi:10.1016/j.jlap.2005.04.001
[42] Georg Struth. Modal tools for separation and refinement. Electron. Notes Theor. Comput. Sci., 214:81-101, 2008. · Zbl 1283.68215
[43] Terese. Term rewriting systems, volume 55 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2003. · Zbl 1030.68053
[44] Joakim von Wright. Towards a refinement algebra. Sci. Comput. Program., 51(1-2):23-45, 2004. This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2, 10777 Berlin, Germany
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.