×

Shuffle polygraphic resolutions for operads. (English) Zbl 1519.18015

Algebraic rewriting theory provides methods to compute cofibrant replacements of algebraic structures from presentations that take into account computational properties of these structures. This rewriting approach gives algebraic algorithmic methods to solve decidability and computational problems, sush as the ideal membership problem, and the computation of linear bases and (co)homological properties. The machinery consists in presenting an algebraic structure by a system of generators and rewriting rules, and producing a cofibrant replacement that involves the overlappings occurring in the applications of the rewriting rules. The rewriting systems are formulated in terms of Gröbner bases, being defined with respect to a given minimal order. Rewriting approaches have also been used in the categorical context to present higher categories by higher dimensional rewriting systems, called polygraphs or computads [A. Burroni, Theor. Comput. Sci. 115, No. 1, 43–62 (1993; Zbl 0791.08004); R. Street, J. Pure Appl. Algebra 8, 149–181 (1976; Zbl 0335.18005)], where the cofibrant replacements of a higher category are generated by polygraphic resolutions [Y. Guiraud and P. Malbos, Adv. Math. 231, No. 3–4, 2294–2351 (2012; Zbl 1266.18008); Y. Lafont et al., Adv. Math. 224, No. 3, 1183–1231 (2010; Zbl 1236.18017); F. Métayer, Theory Appl. Categ. 11, 148–184 (2003; Zbl 1020.18001)].
This paper combines the polygraphic and the Gröbner bases approaches in order to compute higher dimensional presentations of shuffle operads using the polygraphic machinerty. The main construction of this paper extends a confluent and terminating shuffle polygraph presenting a shuffle operad into a shuffle polygraphic resolution generated by the overlapping branchings of the original polygraph. To address the question of minimal resolutions, the authors make explicit these overlappings in all dimensions of the polygraphic resolution, giving an inductive method to compute a bimodule resolution that allows of stating a minimality result for shuffle operads, as well as a condition for Koszulness.

MSC:

18M70 Algebraic operads, cooperads, and Koszul duality
18N30 Strict omega-categories, computads, polygraphs
68Q42 Grammars and rewriting systems

References:

[1] J.Adámek and J.Rosický, Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, vol. 189, Cambridge University Press, Cambridge, 1994. · Zbl 0795.18007
[2] D. J.Anick, On the homology of associative algebras, Trans. Amer. Math. Soc.296 (1986), no. 2, 641-659. · Zbl 0598.16028
[3] D.Ara, A.Burroni, Y.Guiraud, P.Malbos, M.François, and S.Mimram, Polygraphs: from rewriting to higher categories, Forthcoming monograph (2022), 540 pages.
[4] D.Ara and G.Maltsiniotis, Le type d’homotopie de la \(\infty \)‐catégorie associée à un complexe simplicial, Preprint, hal‐01132592, 2015.
[5] M.Barr, Cartan-Eilenberg cohomology and triples, J. Pure Appl. Algebra112 (1996), no. 3, 219-238. · Zbl 0920.18005
[6] M.Barr, Acyclic models, CRM Monograph Series, vol. 17, American Mathematical Society, Providence, RI, 2002. · Zbl 1007.18001
[7] H.‐J.Baues, M.Jibladze, and A.Tonks, Cohomology of monoids in monoidal categories, in Operads: proceedings of renaissance conferences (Hartford, CT/Luminy, 1995), Contemp. Math., vol. 202, Amer. Math. Soc., Providence, RI, 1997, pp. 137-165. · Zbl 0860.18006
[8] R.Berger, Confluence and Koszulity, J. Algebra201 (1998), no. 1, 243-283. · Zbl 0915.16025
[9] R.Berger, Koszulity for nonquadratic algebras, J. Algebra239 (2001), no. 2, 705-734. · Zbl 1035.16023
[10] G. M.Bergman, The diamond lemma for ring theory, Adv. Math.29 (1978), no. 2, 178-218. · Zbl 0326.16019
[11] L. A.Bokut, Imbeddings into simple associative algebras, Algebra i Logika15 (1976), no. 2, 117-142, 245. · Zbl 0349.16007
[12] M. R.Bremner and V.Dotsenko, Algebraic operads, CRC Press, Boca Raton, FL, 2016. (An algorithmic companion.) · Zbl 1350.18001
[13] K. S.Brown, The geometry of rewriting systems: a proof of the Anick‐Groves‐Squier theorem, in Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., vol. 23, Springer, New York, 1992, pp. 137-163. · Zbl 0764.20016
[14] B.Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal), Ph.D. thesis, Mathematical Institute, University of Innsbruck, Austria, 1965. (English translation in J. Symbolic Comput., Special issue on logic, mathematics, and computer science: interactions 41 (2006), no. 3-4, 475-511.) · Zbl 1245.13020
[15] A.Burroni, Higher‐dimensional word problem, in Category theory and computer science (Paris, 1991), Lecture Notes Comput. Sci., vol. 539, Springer, Berlin, 1991, pp. 94-105. · Zbl 0788.18004
[16] A.Burroni, Higher‐dimensional word problems with applications to equational logic, Theoret. Comput. Sci.115 (1993), no. 1, 43-62. Fourth Summer Conference on Category Theory and Computer Science (Paris, 1991). · Zbl 0791.08004
[17] C.Chenavier, B.Dupont, and P.Malbos, Confluence of algebraic rewriting systems, Math. Structures Comput. Sci. (2022). https://doi.org/10.1017/S0960129521000426 · Zbl 1512.68126 · doi:10.1017/S0960129521000426
[18] P.Dehornoy and Y.Lafont, Homology of Gaussian groups, Ann. Inst. Fourier (Grenoble)53 (2003), no. 2, 489-540. · Zbl 1100.20036
[19] V.Dotsenko and A.Khoroshkin, Gröbner bases for operads, Duke Math. J.153 (2010), no. 2, 363-396. · Zbl 1208.18007
[20] V.Dotsenko and A.Khoroshkin, Quillen homology for operads via Gröbner bases, Doc. Math.18 (2013), 707-747. · Zbl 1278.18018
[21] B.Fresse, Koszul duality of operads and homology of partition posets, in Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic \(K\)‐theory, Contemp. Math., vol. 346, Amer. Math. Soc., Providence, RI, 2004, pp. 115-215. · Zbl 1077.18007
[22] B.Fresse, Homotopy of operads and Grothendieck‐Teichmüller groups. Part 1, Mathematical Surveys and Monographs, vol. 217, American Mathematical Society, Providence, RI, 2017. (The algebraic theory and its topological background.) · Zbl 1375.55007
[23] S.Gaussent, Y.Guiraud, and P.Malbos, Coherent presentations of Artin monoids, Compos. Math.151 (2015), no. 5, 957-998. · Zbl 1398.20069
[24] Y.Guiraud, Rewriting methods in higher algebra, Habilitation à diriger des recherches, Université Paris 7, 2019.
[25] Y.Guiraud, E.Hoffbeck, and P.Malbos, Convergent presentations and polygraphic resolutions of associative algebras, Math. Z.293 (2019), no. 1-2, 113-179. · Zbl 1423.16008
[26] Y.Guiraud and P.Malbos, Higher‐dimensional normalisation strategies for acyclicity, Adv. Math.231 (2012), no. 3-4, 2294-2351. · Zbl 1266.18008
[27] Y.Guiraud and P.Malbos, Polygraphs of finite derivation type, Math. Structures Comput. Sci.28 (2018), no. 2, 155-201. · Zbl 1396.18004
[28] E.Hoffbeck, A Poincaré‐Birkhoff‐Witt criterion for Koszul operads, Manuscripta Math.131 (2010), no. 1-2, 87-110. · Zbl 1207.18009
[29] G.Huet, Confluent reductions: abstract properties and applications to term rewriting systems, J. Assoc. Comput. Mach.27 (1980), no. 4, 797-821. · Zbl 0458.68007
[30] M.Janet, Sur les systèmes d’équations aux dérivées partielles, J. Math. Pures Appl.8 (1920), no. 3, 65-151. · JFM 47.0440.03
[31] A.Khoroshkin and D.Piontkovski, On generating series of finitely presented operads, J. Algebra426 (2015), 377-429. · Zbl 1305.18034
[32] D.Knuth and P.Bendix, Simple word problems in universal algebras, in Computational problems in abstract algebra (Proc. Conf., Oxford, 1967), Pergamon, Oxford, 1970, pp. 263-297. · Zbl 0188.04902
[33] Y.Kobayashi, Complete rewriting systems and homology of monoid algebras, J. Pure Appl. Algebra65 (1990), no. 3, 263-275. · Zbl 0711.20035
[34] Y.Lafont, F.Métayer, and K.Worytkiewicz, A folk model structure on omega‐cat, Adv. Math.224 (2010), no. 3, 1183-1231. · Zbl 1236.18017
[35] J.‐L.Loday, La renaissance des opérades, Astérisque237 (1996), Exp. No. 792, 3, 47-74. (Séminaire Bourbaki, vol. 1994/95.) · Zbl 0866.18007
[36] J.‐L.Loday and B.Vallette, Algebraic operads, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346, Springer, Heidelberg, 2012. · Zbl 1260.18001
[37] P.Malbos and I.Ren, Completion in operads via essential syzygies, Proceedings of the 46th International Symposium on Symbolic and Algebraic Computation, ISSAC ’21, New York, NY, 2021, Association for Computing Machinery.
[38] M.Markl, Models for operads, Comm. Algebra24 (1996), no. 4, 1471-1500. · Zbl 0848.18003
[39] J. P.May, The geometry of iterated loop spaces (Springer, Berlin, 1972), Lectures Notes in Mathematics, vol. 271. · Zbl 0244.55009
[40] F.Métayer, Resolutions by polygraphs, Theory Appl. Categ.11 (2003), no. 7, 148-184. · Zbl 1020.18001
[41] M.Newman, On theories with a combinatorial definition of “equivalence”, Ann. of Math. (2)43 (1942), no. 2, 223-243. · Zbl 0060.12501
[42] M.Nivat, Congruences parfaites et quasi‐parfaites, in Séminaire P. Dubreil, 25e année (1971/72), Algèbre, Fasc. 1, Exp. No. 7, Secrétariat Mathématique, Paris, 1973, p. 9. · Zbl 0338.02018
[43] S. B.Priddy, Koszul resolutions, Trans. Amer. Math. Soc.152 (1970), 39-60. · Zbl 0261.18016
[44] D.Quillen, On the (co‐) homology of commutative rings, Applications of categorical algebra (Proc. Sympos. Pure Math., vol. XVII, New York, 1968), Amer. Math. Soc., Providence, RI, 1970, pp. 65-87. · Zbl 0212.03201
[45] A. I.Shirshov, Some algorithmic problems for Lie algebras, Sib. Mat. Zh.3 (1962), 292-296. · Zbl 0104.26004
[46] C. C.Squier, Word problems and a homological finiteness condition for monoids, J. Pure Appl. Algebra49 (1987), no. 1-2, 201-217. · Zbl 0648.20045
[47] C. C.Squier, F.Otto, and Y.Kobayashi, A finiteness condition for rewriting systems, Theoret. Comput. Sci.131 (1994), no. 2, 271-294. · Zbl 0863.68082
[48] R.Street, Limits indexed by category‐valued 2‐functors, J. Pure Appl. Algebra8 (1976), no. 2, 149-181. · Zbl 0335.18005
[49] P.Tamaroff, Minimal models for monomial algebras, Homology Homotopy Appl.23 (2021), no. 1, 341-366. · Zbl 1462.16008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.