×

On translated rank-\(2\) Brill-Noether loci on regular surfaces. (English) Zbl 1487.14091

Let \(X\) be a smooth complex projective variety of dimension \(n\) and \(H\) an ample divisor on \(X\), and let \(M_H:=M_H(r;c_1,\ldots,c_s)\) be the moduli space of vector bundles of rank \(r\) and Chern classes \(c_1,\ldots,c_s\) (\(s=\min\{r,n\}\)) on \(X\), which are slope-stable with respect to \(H\). One can define Brill-Noether loci in the same way as for curves by writing \(W_H^k:=W_H^k(r;c_1,\ldots,c_s)\) for the set of bundles \(E\in M_H\) with \(h^0(E)\ge k\). L. Costa and R. M. Miró-Roig [Forum Math. 22, No. 3, 411–432 (2010; Zbl 1190.14040)] showed that \(W_H^k\) can be given a structure of determinantal variety provided that \(h^i(E)=0\) for \(i\ge2\) and every \(E\in M_H\). Moreover, each non-empty irreducible component of \(W_H^k\) has dimension at least \(\rho^k_H:=\dim(M_H)-k(k-\chi(r;c_1,\cdots,c_s))\) and \(W_H^{k+1}\) is contained in the singular set of \(W_H^k\) whenever \(W_H^k\ne M_H\).
The author of the current paper extends this study by considering the infinitesimal structure of \(W_H\) under the same hypothesis that \(h^i(E)=0\) for \(i\ge2\) and any \(E\in M_H\). She obtains a result similar to that for curves, namely that, if \(E\in W^k_h\setminus W^{k+1}_H\), the Zariski tangent space of \(W^k_H\) at \(E\) is isomorphic to \((Im(\mu_E))^\perp\), where \(\mu_E\) is the cup-product map \(H^0(E)\otimes H^{n-1}(E^*\otimes K_X)\to H^{n-1}(K_X\otimes E^*\otimes E)\). Moreover, if \(M_H\) is smooth at \(E\), then \(W^k_H\) is smooth and of the expected dimension \(\rho^k_H\) at \(E\) if and only if \(\mu_E\) is injective.
Now let \(X\) be a smooth regular surface and let \({\mathcal C}_X\) denote the ample cone in \(\operatorname{Num}(X)\otimes {\mathbb R}\). Let \(\zeta\in\operatorname{Num}(X)\otimes {\mathbb R}\) be such that \(\zeta\equiv 2F-c_1\) for some divisor \(F\) on \(X\) and \(-(4c_2-c_1^2)\le\zeta^2<0\). A wall \(W^\zeta\) of type \((c_1,c_2)\) is defined as the set of all \(x\in{\mathcal C}_X\) such that \(x\cdot\zeta=0\). A polarisation \(H\) is said to be above (below) the wall if \(\zeta.H>0\) (\(\zeta.H<0\)). Define \(E_\zeta(c_1,c_2)\) to be the set of all locally free sheaves \(V\) of rank \(2\) given by non-trivial extensions of \({\mathcal O}_X(c_1-F)\otimes{\mathcal I}_Z\) by \({\mathcal O}_X(F)\) for some divisor \(F\) such that \(2F-c_1\equiv\zeta\) and \(Z\) is a locally complete intersection \(0\)-cycle of length \(c_2+\frac{\zeta^2-c_1^2}4\). Now let \(H^2(X,{\mathcal O}_X)=0\) and suppose that \(4c_2-c_1^2>0\) and that \(H\) lies in a chamber adjacent to the non-empty wall \(W^\zeta\) and below the wall. Suppose further that \(H^2(X,{\mathcal O}(c_1-2L))=0\) for all \(L\equiv\frac12(\zeta+c_1)\). Then (Theorem 3.3) \(E_\zeta(c_1,c_2)\) is the disjoint union of the translated Brill-Noether loci \(W^1_H(\tilde{c}_1,\tilde{c}_2)\otimes L\) with \(L\equiv\frac12(\zeta+c_1)\), where \(\tilde{c}_i(E)=c_1(E\otimes L^{-1})\). In particular, in the case of a Hirzebruch surface, \(E_\zeta(c_1,c_2)=W^1_H(\tilde{c}_1,\tilde{c}_2)\otimes L\) for \(L=\frac12(\zeta+c_1)\) and this translated Brill-Noether locus is non-empty. Finally, under the hypotheses of Theorem 3.3, \(W^1_H(\tilde{c}_1,\tilde{c}_2)\) is smooth of the expected dimension.

MSC:

14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
14J26 Rational and ruled surfaces
14J28 \(K3\) surfaces and Enriques surfaces

Citations:

Zbl 1190.14040
Full Text: DOI

References:

[1] Aprodu, M.; Brînzănescu, V., Stable rank-2 vector bundles over ruled surfaces, C. R. Math. Acad. Sci. Paris, 325, 3, 295-300 (1997) · Zbl 0905.14025 · doi:10.1016/S0764-4442(97)83959-6
[2] Aprodu, M.; Brînzănescu, V., Moduli spaces of vector bundles over ruled surfaces, Nagoya Math. J., 154, 111-122 (1999) · Zbl 0938.14024 · doi:10.1017/S0027763000025332
[3] Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.D.: Geometry of Algebraic Curves: Volume I. Grundlehren der mathematischen Wissenschaften, vol. 267. Springer, New York (1985) · Zbl 0559.14017
[4] Brînzănescu, V.: Holomorphic Vector Bundles over Compact Complex Surfaces. Lecture Nothes in Mathematics, vol. 1624. Springer, Berlin, Heidelberg (1996) · Zbl 0848.32024
[5] Brînzănescu, V., Stoia, M.: Topologically trivial algebraic 2-vector bundles on ruled surfaces. II. In: Algebraic Geometry, Bucharest 1982 (Bucharest, 1982), pp. 34-46. Lecture Notes in Math., 1056. Springer, Berlin (1984) · Zbl 0547.14006
[6] Costa, L., Miró-Roig, R.M.: Brill-Noether theory for moduli spaces of sheaves on algebraic varieties. Forum Math. 22 (2008) · Zbl 1190.14040
[7] Costa, L.; Miró-Roig, RM, Brill-Noether theory on Hirzebruch surfaces, J. Pure Appl. Algebra, 214, 1612-1622 (2010) · Zbl 1188.14012 · doi:10.1016/j.jpaa.2009.12.006
[8] Friedman, R., Algebraic Surfaces and Holomorphic Vector Bundles (1998), New York: Springer, New York · Zbl 0902.14029 · doi:10.1007/978-1-4612-1688-9
[9] Fulton, W.: Intersection Theory. A Series of Modern Surveys in Mathematics, vol. 2. Springer, Berlin Heidelberg (1984) · Zbl 0541.14005
[10] Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977) · Zbl 0367.14001
[11] Hartshorne, R.: Deformation Theory. Graduate Texts in Mathematics, vol. 257. Springer, New York (2010) · Zbl 1186.14004
[12] Hitching, PH; Hoff, M.; Newstead, PE, Nonemptiness and smoothness of twisted Brill-Noether loci, Annali di Matematica, 200, 685-709 (2021) · Zbl 1466.14042 · doi:10.1007/s10231-020-01009-x
[13] Huybrechts, D.; Lehn, M., The Geometry of Moduli Spaces of Sheaves. Cambridge Mathematical Library (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1206.14027 · doi:10.1017/CBO9780511711985
[14] Mukai, S., Vector Bundles and Brill-Noether Theory. MSRI Series (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0866.14024
[15] Mumford, D., The Red Book of Varieties and Schemes (2nd expanded ed.). Lecture Notesin Mathematics (1999), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 0945.14001 · doi:10.1007/b62130
[16] Qin, Z., Birational properties of moduli spaces of stable locally free rank-2 sheaves on algebraic surfaces, Manuscr. Math, 72, 163-180 (1991) · Zbl 0751.14002 · doi:10.1007/BF02568273
[17] Qin, Z., Moduli spaces of stable rank-2 bundles on ruled surfaces, Invent. Math., 110, 615-626 (1992) · Zbl 0808.14010 · doi:10.1007/BF01231346
[18] Qin, Z., Equivalence classes of polarizations and moduli spaces of sheaves, J. Differential Geom., 37, 397-415 (1993) · Zbl 0802.14005 · doi:10.4310/jdg/1214453682
[19] Simpson, CT, Moduli of representations of the fundamental group of a smooth projective variety I, Inst. Hautes Études Sci. Publ. Math., 79, 47-129 (1994) · Zbl 0891.14005 · doi:10.1007/BF02698887
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.