×

A characterization of bielliptic curves via syzygy schemes. (English) Zbl 1419.14047

Let \(C\subset \mathbb {P}^{g-1}\) the canonical model of a smooth genus \(g\) curves. If \(g\ge 11\) the authors shows that the second syzygy scheme of \(C\) is \(\ne C\) if and only if \(C\) is a bielliptic curve. For lower \(g\) they classify the second syzygy scheme of the \(4\)-gonal curves. For the proof they first exclude the curves with Clifford index \(\ge 3\) and then analize the \(4\)-gonal curves.

MSC:

14H51 Special divisors on curves (gonality, Brill-Noether theory)
13D02 Syzygies, resolutions, complexes and commutative rings

References:

[1] Aprodu, M.; Nagel, J., Koszul Cohomology and Algebraic Geometry, Univ. Lecture Series, vol. 52 (2010), American Math. Soc.: American Math. Soc. Providence, R.I. · Zbl 1189.14001
[2] Bopp, Ch., Syzygies of 5-gonal canonical curves, Doc. Math., 20, 1055-1069 (2015) · Zbl 1358.13016
[3] Bopp, Ch.; Hoff, M., Resolutions of general canonical curves on rational normal scrolls, Arch. Math., 105, 239-249 (2015) · Zbl 1326.14074
[4] Chiodo, A.; Eisenbud, E.; Farkas, G.; Schreyer, F.-O., Syzygies of torsion bundles and the geometry of the level l modular variety over \(M_g\), Invent. Math., 194, 73-118 (2013) · Zbl 1284.14006
[5] Ehbauer, S., Syzygies of points in projective space and applications, (Zero-Dimensional Schemes. Zero-Dimensional Schemes, Ravello, 1992 (1994), de Gruyter: de Gruyter Berlin), 145-170 · Zbl 0840.14032
[6] Eusen, F.; Schreyer, F.-O., A remark to a conjecture of Paranjape and Ramanan, (Geometry and Arithmetic. Geometry and Arithmetic, EMS Ser. Congr. Rep. (2012), Eur. Math. Soc.: Eur. Math. Soc. Zürich), 113-123 · Zbl 1317.14076
[7] Green, M., The canonical ring of a variety of general type, Duke Math. J., 49, 4, 1087-1113 (1982) · Zbl 0607.14005
[8] Green, M., Koszul cohomology and the geometry of projective varieties, J. Differ. Geom., 19, 1, 125-171 (1984) · Zbl 0559.14008
[9] Hoff, M., Osculating Cones to Brill-Noether Loci for Line and Vector Bundles on Curves and Relative Canonical Resolutions of Curves (2016), Dissertation, Saarbrucken
[10] Petri, K., Über die invariante Darstellung algebraischer Funktionen einer Veränderlichen, Math. Ann., 88, 242-289 (1922) · JFM 49.0264.02
[11] Petri, K., Über Spezialkurven I, Math. Ann., 93, 182-209 (1925) · JFM 51.0510.01
[12] Schreyer, F.-O., Syzygies of canonical curves and special linear systems, Math. Ann., 275, 105-137 (1986) · Zbl 0578.14002
[13] Stevens, J., Deformations of Singularities, LNM, vol. 1811 (2003), Springer · Zbl 1034.14003
[14] Voisin, C., Green’s generic syzygy conjecture for curves of even genus lying on a \(K3\) surface, J. Eur. Math. Soc., 4, 363-404 (2002) · Zbl 1080.14525
[15] Voisin, C., Green’s canonical syzygy conjecture for generic curves of odd genus, Compos. Math., 141, 1163-1190 (2005) · Zbl 1083.14038
[16] von Bothmer, H.-Ch., Generic syzygy schemes, J. Pure Appl. Algebra, 208, 867-876 (2007) · Zbl 1118.13013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.