×

Computational multiscale method for parabolic wave approximations in heterogeneous media. (English) Zbl 1510.65241

Summary: In this paper, we develop a computational multiscale method to solve the parabolic wave approximation with heterogeneous and variable media. Parabolic wave approximation is a technique to approximate the full wave equation. One benefit of the method is that one wave propagation direction can be taken as an evolution direction, and one then can discretize it using a classical scheme like backward Euler method. Consequently, one obtains a set of quasi-gas-dynamic (QGD) models with possibly different heterogeneous permeability fields. For coarse discretization, we employ constraint energy minimization generalized multiscale finite element method (CEM-GMsFEM) to perform spatial model reduction. The resulting system can be solved by combining the central difference in time evolution. Due to the variable media, we apply the technique of proper orthogonal decomposition (POD) to further the dimension of the problem and solve the corresponding model problem in the POD space instead of in the whole multiscale space spanned by all possible multiscale basis functions. We prove the stability of the full discretization scheme and give the convergence analysis of the proposed approximation scheme. Numerical results verify the effectiveness of the proposed method.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35L05 Wave equation

References:

[1] Abdulle, A.; Engquist, B., Finite element heterogeneous multiscale methods with near optimal computational complexity, Multiscale Model. Simul., 6, 4, 1059-1084 (2007) · Zbl 1155.65096
[2] Altmann, R.; Henning, P.; Peterseim, D., Numerical homogenization beyond scale separation, Acta Numer., 30, 1-86 (2021) · Zbl 07674568
[3] Bamberger, A.; Engquist, B.; Halpern, L.; Joly, P., Higher order paraxial wave equation approximations in heterogeneous media, SIAM J. Appl. Math., 48, 1, 129-154 (1988) · Zbl 0654.35056
[4] Bamberger, A.; Engquist, B.; Halpern, L.; Joly, P., Parabolic wave equation approximations in heterogenous media, SIAM J. Appl. Math., 48, 1, 99-128 (1988) · Zbl 0654.35055
[5] Bamberger, A.; Euggnist, B.; Helpern, L.; Joly, P., The paraxial approximation for the wave equation: some new results, Adv. Comput. Methods Part. Differ. Equ., 340-344 (1984)
[6] Blomgren, P.; Papanicolaou, G.; Zhao, H., Super-resolution in time-reversal acoustics, J. Acoust. Soc. Am., 111, 1, 230-248 (2002)
[7] Brock, H.; Buchal, R.; Spofford, C., Modifying the sound-speed profile to improve the accuracy of the parabolic-equation technique, J. Acoust. Soc. Am., 62, 3, 543-552 (1977)
[8] Brown, D. L.; Efendiev, Y.; Hoang, V. H., An efficient hierarchical multiscale finite element method for stokes equations in slowly varying media, Multiscale Model. Simul., 11, 1, 30-58 (2013) · Zbl 1267.74096
[9] Cances, E.; Ehrlacher, V.; Legoll, F.; Stamm, B., An embedded corrector problem to approximate the homogenized coefficients of an elliptic equation, C. R. Math., 353, 9, 801-806 (2015) · Zbl 1326.35115
[10] Chen, J.; Sun, S.; He, Z., Homogenize coupled Stokes-Cahn-Hilliard system to darcy’s law for two-phase fluid flow in porous medium by volume averaging, J. Porous Media, 22, 1 (2019)
[11] Chen, J.; Sun, S.; Wang, X., Homogenization of two-phase fluid flow in porous media via volume averaging, J. Comput. Appl. Math., 353, 265-282 (2019) · Zbl 1432.76252
[12] Chetverushkin, B.; Chung, E.; Efendiev, Y.; Pun, S.-M.; Zhang, Z., Computational multiscale methods for quasi-gas dynamic equations, J. Comput. Phys., 440, 110352 (2021) · Zbl 07512361
[13] Chetverushkin, B.; Saveliev, A.; Saveliev, V., Compact quasi-gasdynamic system for high-performance computations, Comput. Math. Math. Phys., 59, 3, 493-500 (2019) · Zbl 1416.76173
[14] Chetverushkin, B. N.; D’Ascenzo, N.; Saveliev, A. V.; Saveliev, V., Kinetic model and magnetogasdynamics equations, Comput. Math. Math. Phys., 58, 5, 691-699 (2018) · Zbl 1443.76242
[15] Chung, E.; Efendiev, Y.; Hou, T. Y., Adaptive multiscale model reduction with generalized multiscale finite element methods, J. Comput. Phys., 320, 69-95 (2016) · Zbl 1349.76191
[16] Chung, E.; Efendiev, Y.; Lee, C. S., Mixed generalized multiscale finite element methods and applications, Multiscale Model. Simul., 13, 338-366 (2014) · Zbl 1317.65204
[17] Chung, E.; Efendiev, Y.; Leung, W. T., Constraint energy minimizing generalized multiscale finite element method, Comput. Methods Appl. Mech. Eng., 339, 298-319 (2018) · Zbl 1440.65195
[18] Chung, E.; Efendiev, Y.; Leung, W. T., Constraint energy minimizing generalized multiscale finite element method in the mixed formulation, Comput. Geosci., 22, 3, 677-693 (2018) · Zbl 1405.76049
[19] Chung, E.; Pollock, S.; Pun, S.-M., Goal-oriented adaptivity of mixed GMsFEM for flows in heterogeneous media, Comput. Methods Appl. Mech. Eng., 323, 151-173 (2017) · Zbl 1433.76076
[20] Chung, E. T.; Efendiev, Y.; Leung, W. T., Generalized multiscale finite element methods for wave propagation in heterogeneous media, Multiscale Model. Simul., 12, 4, 1691-1721 (2014) · Zbl 1315.65085
[21] Chung, E. T.; Efendiev, Y.; Leung, W. T., Fast online generalized multiscale finite element method using constraint energy minimization, J. Comput. Phys., 355, 450-463 (2018) · Zbl 1380.65366
[22] Chung, E. T.; Efendiev, Y.; Leung, W. T.; Vasilyeva, M.; Wang, Y., Non-local multi-continua upscaling for flows in heterogeneous fractured media, J. Comput. Phys., 372, 22-34 (2018) · Zbl 1415.76449
[23] Claerbout, J. F., Fundamentals of Geophysical Data Processing, vol. 274 (1976), Citeseer
[24] Cole, J. D., Modern developments in transonic flow, SIAM J. Appl. Math., 29, 4, 763-787 (1975) · Zbl 0324.76048
[25] E, W.; Engquist, B., The heterogeneous multiscale methods, Commun. Math. Sci., 1, 1, 87-132 (2003) · Zbl 1093.35012
[26] Efendiev, Y.; Galvis, J., A domain decomposition preconditioner for multiscale high-contrast problems, (Huang, Y.; Kornhuber, R.; Widlund, O.; Xu, J., Domain Decomposition Methods in Science and Engineering XIX. Domain Decomposition Methods in Science and Engineering XIX, Lecture Notes in Computational Science and Engineering, vol. 78 (2011), Springer-Verlag), 189-196 · Zbl 1217.65221
[27] Efendiev, Y.; Galvis, J.; Hou, T. Y., Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys., 251, 116-135 (2013) · Zbl 1349.65617
[28] Fafalis, D.; Fish, J., Computational continua for linear elastic heterogeneous solids on unstructured finite element meshes, Int. J. Numer. Methods Eng., 115, 4, 501-530 (2018) · Zbl 07865064
[29] Fish, J.; Kuznetsov, S., Computational continua, Int. J. Numer. Methods Eng., 84, 7, 774-802 (2010) · Zbl 1202.74199
[30] Fish, J.; Yuan, Z., Multiscale enrichment based on partition of unity, Int. J. Numer. Methods Eng., 62, 10, 1341-1359 (2005) · Zbl 1078.74637
[31] Fu, S.; Chung, E.; Li, G., Edge multiscale methods for elliptic problems with heterogeneous coefficients, J. Comput. Phys. (2019) · Zbl 1452.65337
[32] Gao, K.; Fu, S.; Gibson Jr, R. L.; Chung, E. T.; Efendiev, Y., Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, J. Comput. Phys., 295, 161-188 (2015) · Zbl 1349.74322
[33] Hajibeygi, H.; Kavounis, D.; Jenny, P., A hierarchical fracture model for the iterative multiscale finite volume method, J. Comput. Phys., 230, 4, 8729-8743 (2011) · Zbl 1370.76095
[34] Hajibeygi, H.; Olivares, M. B.; HosseiniMehr, M.; Pop, S.; Wheeler, M., A benchmark study of the multiscale and homogenization methods for fully implicit multiphase flow simulations, Adv. Water Resour., 143, 103674 (2020)
[35] Hasegawa, A.; Tappert, F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Appl. Phys. Lett., 23, 3, 142-144 (1973)
[36] Henning, P.; Målqvist, A.; Peterseim, D., A localized orthogonal decomposition method for semi-linear elliptic problems, ESAIM, 48, 5, 1331-1349 (2014) · Zbl 1300.35011
[37] Hoang, V.; Schwab, C., High dimensional finite elements for elliptic problems with multiple scales, Multiscale Model. Simul., 3, 168-194 (2004) · Zbl 1074.65135
[38] Holmes, P.; Lumley, J. L.; Berkooz, G.; Rowley, C. W., Turbulence, Coherent Structures, Dynamical Systems and Symmetry (2012), Cambridge University Press · Zbl 1251.76001
[39] Hou, T. Y.; Wu, X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 169-189 (1997) · Zbl 0880.73065
[40] Hudson, J., A parabolic approximation for elastic waves, Wave Motion, 2, 3, 207-214 (1980) · Zbl 0471.73028
[41] Jenny, P.; Lee, S.; Tchelepi, H., Multi-scale finite volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys., 187, 47-67 (2003) · Zbl 1047.76538
[42] Jenny, P.; Lee, S.; Tchelepi, H., Adaptive multi-scale finite volume method for multi-phase flow and transport in porous media, Multiscale Model. Simul., 3, 30-64 (2004) · Zbl 1160.76372
[43] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90, 1, 117-148 (2001) · Zbl 1005.65112
[44] Le Bris, C.; Legoll, F.; Lozinski, A., An MsFEM type approach for perforated domains, Multiscale Model. Simul., 12, 3, 1046-1077 (2014) · Zbl 1316.35021
[45] Le Bris, C.; Legoll, F.; Thomines, F., Multiscale finite element approach for weakly random problems and related issues, ESAIM, 48, 3, 815-858 (2014) · Zbl 1300.65007
[46] Ma, D.; Ching, W.-K.; Zhang, Z., Proper orthogonal decomposition method for multiscale elliptic PDEs with random coefficients, J. Comput. Appl. Math., 370, 112635 (2020) · Zbl 1439.35588
[47] Målqvist, A.; Peterseim, D., Localization of elliptic multiscale problems, Math. Comput., 83, 290, 2583-2603 (2014) · Zbl 1301.65123
[48] McDaniel, S. T., Parabolic approximations for underwater sound propagation, J. Acoust. Soc. Am., 58, 6, 1178-1185 (1975) · Zbl 0318.76057
[49] McDaniel, S. T., Propagation of normal mode in the parabolic approximation, J. Acoust. Soc. Am., 57, 2, 307-311 (1975)
[50] Owhadi, H.; Zhang, L., Metric-based upscaling, Commun. Pure Appl. Math., 60, 675-723 (2007) · Zbl 1190.35070
[51] Roberts, A.; Kevrekidis, I., General tooth boundary conditions for equation free modeling, SIAM J. Sci. Comput., 29, 4, 1495-1510 (2007) · Zbl 1143.65373
[52] Salama, A.; Sun, S.; El Amin, M. F.; Wang, Y.; Kumar, K., Flow and transport in porous media: a multiscale focus, Geofluids (2017)
[53] Samaey, G.; Kevrekidis, I.; Roose, D., Patch dynamics with buffers for homogenization problems, J. Comput. Phys., 213, 1, 264-287 (2006) · Zbl 1092.65074
[54] Samaey, G.; Roose, D.; Kevrekidis, I., The gap-tooth scheme for homogenization problems, Multiscale Model. Simul., 4, 1, 278-306 (2005) · Zbl 1092.35009
[55] Sirovich, L., Turbulence and the dynamics of coherent structures, parts I-III, Q. Appl. Math., 45, 3, 561-590 (1987) · Zbl 0676.76047
[56] Tan, W. C.; Hoang, V. H., High dimensional finite element method for multiscale nonlinear monotone parabolic equations, J. Comput. Appl. Math., 345, 471-500 (2019) · Zbl 1402.65118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.