×

Carbon spot prices in equilibrium frameworks associated with climate change. (English) Zbl 1524.91071

Summary: At present, it is believed that the best approach to mitigate global warming is the market-based formulation of carbon emission pricing. Thus, in this paper, we work on determining the carbon spot prices in a stochastic equilibrium framework associated with climate change. Two circumstances, differentiated by whether taking carbon trading in the market, are considered. We construct optimization problems and solve them by using dynamic programming principle. The Fourier transform and its properties are fully made use of to return the explicit formulas of carbon prices. In addition, some surprising but interesting properties of the carbon prices are also found. First, the carbon prices happen jumps at the end of the abatement period. Second, the return rates of carbon prices are completely dependent on the climate elements. Finally, we present some numeric results in response to our theoretical results.

MSC:

91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
49L12 Hamilton-Jacobi equations in optimal control and differential games
49L20 Dynamic programming in optimal control and differential games
Full Text: DOI

References:

[1] L. M. J. M. Abadie Chamorro, European \(CO_2\) prices and carbon capture investments, Energy Economics, 30, 2992-3015 (2008)
[2] M. E. F. D. K. Arouri Jawadi Nguyen, Nonlinearities in carbon spot-futures price relationships during Phase II of the EU ETS, Economic Modelling, 29, 884-892 (2012) · doi:10.1016/j.econmod.2011.11.003
[3] G. S. Atsalakis, Using computational intelligence to forecast carbon prices, Applied Soft Computing, 43, 107-116 (2016) · doi:10.1016/j.asoc.2016.02.029
[4] E. S. Benz Truck, Modeling the price dynamics of CO2 emission allowances, Energy Economics, 31, 4-15 (2009)
[5] M. S. M. E. Burke Hsiang Miguel, Global non-linear effect of temperature on economic production, Nature, 527, 235-239 (2015) · doi:10.1038/nature15725
[6] Y. T. S. Cai Lontzek, The social cost of carbon with economic and climate risks, Journal of Political Economy, 127, 2684-2734 (2019) · doi:10.1086/701890
[7] R. M. J. Carmona Fehr Hinz, Optimal stochastic control and carbon price formation, SIAM Journal on Control and Optimization, 48, 2168-2190 (2009) · Zbl 1203.93209
[8] R. J. Carmona Hinz, Risk-neutral models for emission allowance prices and option valuation, Management Science, 57, 1453-1468 (2011) · Zbl 1279.91202 · doi:10.1287/mnsc.1110.1358
[9] U. M. Çetin Verschuere, Pricing and hedging in carbon emissions markets, International Journal of Theoretical and Applied Finance, 12, 949-967 (2009) · Zbl 1187.91070 · doi:10.1142/S0219024909005531
[10] M. P. Chamon Mauro, Pricing growth-indexed bonds, Journal of Banking and Finance, 30, 3349-3366 (2006)
[11] P. Chen, Understanding economic complexity and coherence: Market crash, excess capacity, and technology wavelets, Working Paper, 2009.
[12] P. Chen, A biological perspective of macro dynamics and division of labor: Persistent cycles, disruptive technology, and the trade-off between stability and complexity, Working Paper, 2003.
[13] M. L. Chesney Taschini, The endogenous price dynamics of emission allowances and an application to \(CO_2\) option pricing, Applied Mathematical Finance, 19, 447-475 (2012) · Zbl 1372.91079 · doi:10.1080/1350486X.2011.639948
[14] G. D. R. N. Daskalakis Psychoyios Markellos, Modeling CO2 emission allowance prices and derivatives: Evidence from the European trading scheme, Journal of Banking & Finance, 33, 1230-1241 (2009) · doi:10.1016/j.jbankfin.2009.01.001
[15] M. B. F. B. A. Dell Jones Olken, Temperature and income: Reconciling new cross-sectional and panel estimates, American Economic Review, 99, 198-204 (2009) · doi:10.3386/w14680
[16] M. B. F. B. A. Dell Jones Olken, Temperature shocks and economic growth: Evidence from the last half century, American Economic Journal: Macroeconomics, 4, 66-95 (2012) · doi:10.1257/mac.4.3.66
[17] T. E. A. Dietz Rosa, Rethinking the environmental impacts of population, affluence and technology, Human Ecology Review, 1, 277-300 (1994)
[18] A. B. K. Ellerman Buchner, The european union emissions trading scheme: Origins, allocation, and early results, Review of Environmental Economics and Policy, 1, 66-87 (2007) · doi:10.1093/reep/rem003
[19] X. S. L. Fan Li Tian, Chaotic characteristic identification for carbon price and an multi-layer perceptron network prediction model, Expert Systems with Applications, 42, 3945-3952 (2015) · doi:10.1016/j.eswa.2014.12.047
[20] I. S. N. U. A. U. A. H. I. A. Farouq Sambo Ahmad Jakada Danmaraya, Does financial globalization uncertainty affect CO2 emissions? Empirical evidence from some selected SSA countries, Quantitative Finance and Economics, 5, 247-263 (2021)
[21] Y. Z. Fu Zheng, Volatility modeling and the asymmetric effect for China’s carbon trading pilot market, Physica A, 542, 123401 (2020) · doi:10.1016/j.physa.2019.123401
[22] C. J. M. J. García-Martos Rodríguez Sánchez, Modelling and forecasting fossil fuels, \(CO_2\) and electricity prices and their volatilities, Applied Energy, 101, 363-375 (2013)
[23] M. J. P. A. Golosov Hassler Krusell Tsyvinski, Optimal taxes on fossil fuel in general equilibrium, Econometrica, 82, 41-88 (2014) · Zbl 1294.91159 · doi:10.3982/ECTA10217
[24] H. J. Guo Liang, An optimal control model for reducing and trading of carbon emissions, Physica A: Statistical Mechanics and its Applications, 446, 11-21 (2016) · Zbl 1400.91387 · doi:10.1016/j.physa.2015.10.076
[25] H. J. Guo Liang, An optimal control model of carbon reduction and trading, Mathematical Control and Related Fields, 6, 535-550 (2016) · Zbl 1348.93277 · doi:10.3934/mcrf.2016015
[26] C. H. E. Hambel Kraft Schwartz, Optimal carbon abatement in a stochastic equilibrium model with climate change, European Economic Review, 132, 103642 (2021) · doi:10.3386/w21044
[27] S. M. Hitzemann Uhrig-Homburg, Equilibrium price dynamics of emission permits, Journal of Financial and Quantitative Analysis, 53, 1653-1678 (2018) · doi:10.1017/S0022109018000297
[28] S. M. Hitzemann Uhrig-Homburg, Empirical performance of reduced-formmodels for emission permit prices, Review of Derivatives Research, 22, 389-418 (2019) · Zbl 1425.91352
[29] G. S. Klepper Peterson, Marginal abatement cost curves in general equilibrium: The influence of world energy prices, Resource and Energy Economics, 28, 1-23 (2006)
[30] S. M. M. Kruse Meitner Schröder, On the pricing of GDP-linked financial products, Applied Financial Econonmics, 15, 1125-1133 (2005) · doi:10.1080/09603100500359260
[31] Y. Li, Forecasting Chinese carbon emissions based on a novel time series prediction method, Energy Science & Engineering, 8, 2274-2285 (2020)
[32] A. D. F. N. M. Mardani Streimikiene Cavallaro Loganathan Khoshnoudi, Carbon dioxide \((CO_2)\) emissions and economic growth: A systematic review of two decades of research from 1995 to 2017, Science of the Total Environment, 649, 31-49 (2019)
[33] I. Matei, Is financial development good for economic growth? Empirical insights from emerging European countries, Quantitative Finance and Economics, 4, 653-678 (2020) · doi:10.3934/QFE.2020030
[34] W. D. Nordhaus, A Question of Balance: Weighing the Options on Global Warming Policies (2008)
[35] W. D. Nordhaus, Revisiting the social cost of carbon, Proceedings of the National Academy of Sciences of the United States of America, 114, 1518-1523 (2017) · doi:10.1073/pnas.1609244114
[36] W. D. Nordhaus and P. Sztorc, DICE 2013R: Inreoduction and Users Manual, Technical Report, Yale University, 2013.
[37] J. S. P. K. Patel Shah Thakkar Kotecha, Predicting stockmarket index using fusion of machine learning techniques, Expert Systems with Applications, 42, 2162-2172 (2015)
[38] K. S. R. N. S. S. Rana Singh Saxena Sana, Growing items inventory model for carbon emission under the permissible delay in payment with partially backlogging, Green Finance, 3, 153-174 (2021) · doi:10.3934/GF.2021009
[39] A. M. A. V. N. Rather Agarwal Sastry, Recurrent neural network and a hybrid model for prediction of stock returns, Expert Systems with Applications, 42, 3234-3241 (2015) · doi:10.1016/j.eswa.2014.12.003
[40] M. E. F. M. Sanin Violante Mansanet-Bataller, Understanding volatility dynamics in the EU-ETS market, Energy Policy, 82, 321-331 (2015)
[41] J. M. M. Seifert Uhrig-Homburg Wagner, Dynamic behavior of \(CO_2\) spot prices, Journal of Environmental Economics and Management, 56, 180-194 (2008) · Zbl 1146.91355
[42] J. Solana, Climate change litigation as financial risk, Green Finance, 2, 344-372 (2020) · doi:10.3934/GF.2020019
[43] K. Z. A. Tong Liu, Modeling temperature and pricing weather derivatives based on subordinate Ornstein-Uhlenbeck processes, Green Finance, 2, 1-19 (2020) · doi:10.3934/GF.2020001
[44] F. A. van der Ploeg de Zeeuw, Pricing carbon and adjusting capital to fend off climate catastrophes, Environmental & Resource Economics, 72, 29-50 (2018)
[45] L. L. Viguier, M. H. Babiker and J. M. Reilly, Carbon emissions and the Kyoto commitment in the European Union, Report No.70, MIT Joint Program on the Science and Policy of Global Change, 2001.
[46] P. E. J. H. Waggoner Ausubel, A framework for sustainability science: A renovated IPAT identity, Proceedings of the National Academy of Sciences of the United States of America, 99, 7860-7865 (2002) · doi:10.1073/pnas.122235999
[47] J. X. Q. and Q. Wang Sun Cheng Cui, An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting, Science of the Total Environment, 762, 143099 (2021) · doi:10.1016/j.scitotenv.2020.143099
[48] M. L. Weitzman, GHG Targets and Insurance against Catastrophic Climate Damages, Journal of Public Economic Theory, 14, 221-244 (2012) · doi:10.3386/w16136
[49] X. J. Yang Liang, Minimization of carbon abatement cost: modeling analysis and simulation, Discrete and Continuous Dynamical System B, 22, 2939-2969 (2017) · Zbl 1372.35074 · doi:10.3934/dcdsb.2017158
[50] E. F. C. Zagheni Billari, A cost valuation model based on a stochastic representation of the IPAT equation, Population & Environment, 29, 68-82 (2007) · doi:10.1007/s11111-008-0061-1
[51] Y. Y. M. Zhang Wei, An overview of current research on EU ETS: Evidencefrom its operating mechanism and economic effect, Applied Energy, 87, 1804-1814 (2010) · doi:10.1016/j.apenergy.2009.12.019
[52] Z. R. H. G. X. Zheng Xiao Shi Li Zhou, Statistical regularities of Carbon emission trading market: Evidence from European Union allowances, Physica A, 426, 9-15 (2015)
[53] P. L. D. Q. W. J. Zhou Zhang Zhou Xia, Modeling economic performance of interprovincial \(CO_2\) emission reduction quota trading in China, Applied Energy, 112, 1518-1528 (2013)
[54] B. X. J. P. Y. Zhu Shi Chevallier Wang Wei, An adaptive multiscale ensemble learning paradigm for nonstationary and nonlinear energy price time series forecasting, Journal of Forecasting, 35, 633-651 (2016) · Zbl 1376.62122 · doi:10.1002/for.2395
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.