×

Stability theory of the 3-dimensional Euler equations. (English) Zbl 1434.76039

This is a very nice piece of work. The stability problem of Kolmogorov flow is a beautiful subject and has a lot of potential. The 3D is a good direction to go. There should be a lot more novelties associated with 3D. In the zero-viscosity limit, numerical simulations revealed a lot nolvoties associated with 3D. The linear temporal growth is an interesting find.

MSC:

76E05 Parallel shear flows in hydrodynamic stability
35Q31 Euler equations

Software:

Eigtool

References:

[1] V. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, NY, 1978. · Zbl 0386.70001
[2] V. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Springer, New York, NY, 1998. · Zbl 0902.76001
[3] V. I. Arnold and L. D. Meshalkin, A. N. Kolmogorov’s seminar on selected problems of analysis (1958/1959), Uspekhi Mat. Nauk, 15 (1960), pp. 247-250.
[4] J. Bedrossian, P. Germain, and N. Masmoudi, Stability of the Couette flow at high Reynolds numbers in two dimensions and three dimensions, Bull. Amer. Math. Soc. (N.S.), 56 (2019), pp. 373-414. · Zbl 1445.76042
[5] L. Belenkaya, S. Friedlander, and V. Yudovich, The unstable spectrum of oscillating shear flows, SIAM J. Appl. Math., 59 (1999), pp. 1701-1715. · Zbl 0949.76025
[6] L. Böberg and U. Brosa, Onset of turbulence in a pipe, Z. Naturforschung A, 43 (1988), pp. 697-726.
[7] V. Borue and S. A. Orszag, Numerical study of three-dimensional Kolmogorov flow at high reynolds numbers, J. Fluid Mech., 306 (1996), pp. 293-323. · Zbl 0857.76034
[8] E. B. Burger, Exploring the Number Jungle: A Journey into Diophantine Analysis, American Mathematical Society, Providence, RI, 2000. · Zbl 0973.11001
[9] Z. M. Chen and W. Price, Onset of chaotic kolmogorov flows resulting from interacting oscillatory modes, Comm. Math. Phys., 256 (2005), pp. 737-766. · Zbl 1127.76024
[10] P. Constantin, On the Euler equations of incompressible fluids, Bull. Amer. Math. Soc. (N.S.), 44 (2007), pp. 603-621. · Zbl 1132.76009
[11] H. Dullin, Y. Latushkin, R. Marangell, S. Vasudevan, and J. Worthington, Instability of unidirectional flows for the 2D \(\alpha \)-Euler equations, Commun. Pure Appl. Anal., to appear. · Zbl 1447.35255
[12] H. Dullin and J. Worthington, Stability results for idealised shear flows on a rectangular periodic domain, J. Math. Fluid Mech., 20 (2018), pp. 473-484. · Zbl 1393.76037
[13] H. R. Dullin, J. D. Meiss, and J. Worthington, Poisson structure of the three-dimensional Euler equations in Fourier space, J. Phys. A, 52 (2019), 365501. · Zbl 1504.76029
[14] H. R. Dullin, R. Marangell and J. Worthington, Instability of equilibria for the two-dimensional Euler equations on the torus, SIAM J. Appl. Math., 76 (2016), pp. 1446-1470. · Zbl 1343.76012
[15] B. Eckhardt, T. M. Schneider, B. Hof, and J. Westerweel, Turbulence transition in pipe flow, Ann. Rev. Fluid Mech., 39 (2007), pp. 447-468. · Zbl 1296.76062
[16] L. Elsner and M. Paardekooper, On measures of nonnormality of matrices, Linear Algebra Appl., 92 (1987), pp. 107-123. · Zbl 0621.15014
[17] J. D. Gibbon, The three-dimensional Euler equations: Where do we stand?, Phys. D., 237 (2008), pp. 1894-1904. · Zbl 1143.76389
[18] R. M. Gray, Toeplitz and circulant matrices: A review, Found. Trends. Commun. Inform. Theory., 2 (2006), pp. 155-239. · Zbl 1115.15021
[19] M. Hirota, P. J. Morrison, and Y. Hattori, Variational necessary and sufficient stability conditions for inviscid shear flow, in Proc. A, 470 (2014), 20140322. · Zbl 1371.76073
[20] H. Karner, J. Schneid, and C. W. Ueberhuber, Spectral decomposition of real circulant matrices, Linear Algebra Appl., 367 (2002), pp. 301-311. · Zbl 1021.15007
[21] Y. Latushkin, Y. C. Li, and M. Stanislavova, The spectrum of a linearized 2D Euler operator, Stud. Appl. Math., 112 (2004), pp. 259-270. · Zbl 1141.35437
[22] T. Li, D. Wei, and Z. Zhang, Pseudospectral bound and transition threshold for the 3d Kolmogorov flow, Comm. Pure. Appl. Math. (2019), https://doi.org/10.1002/cpa.21863. · Zbl 1442.35346
[23] Y. C. Li, On 2D Euler equations. I. On the energy-Casimir stabilities and the spectra for linearized 2D Euler equations, J. Math. Phys., 41 (2000), pp. 728-758. · Zbl 0997.37044
[24] Y. C. Li, Invariant manifolds and their zero-viscosity limits for Navier-Stokes equations, Dyn. Partial Differ. Equ., 2 (2005), pp. 159-186. · Zbl 1105.35083
[25] L. Meshalkin and I. G. Sinai, Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid, J. Appl. Math. Mech., 25 (1961), pp. 1700-1705. · Zbl 0108.39501
[26] L. Rayleigh, On the stability, or instability, of certain fluid motions, Proc. Lond. Math. Soc., 1 (1879), pp. 57-72. · JFM 12.0711.02
[27] I. Sarris, H. Jeanmart, D. Carati, and G. Winckelmans, Box-size dependence and breaking of translational invariance in the velocity statistics computed from three-dimensional turbulent Kolmogorov flows, Physics of Fluids, 19 (2007), p. 095101. · Zbl 1182.76661
[28] J. V. Shebalin and S. L. Woodruff, Kolmogorov flow in three dimensions, Phys. Fluids, 9 (1997), pp. 164-170.
[29] L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005. · Zbl 1085.15009
[30] L. N. Trefethen, A. Trefethen, S. Reddy, and T. Driscoll, Hydrodynamic stability without eigenvalues, Science, 261 (1993), pp. 578-584. · Zbl 1226.76013
[31] L. van Veen and S. Goto, Sub critical transition to turbulence in three-dimensional kolmogorov flow, Fluid Dyn. Res., 48 (2016), 061425.
[32] J. Worthington, Stability Theory and Hamiltonian Dynamics in the Euler Ideal Fluid Equations, Ph.D. thesis, University of Sydney, Sydney, Australia, 2017. · Zbl 1373.76045
[33] A. M. Yaglom, Hydrodynamic Instability and Transition to Turbulence, Springer, New York, NY, 2012. · Zbl 1312.76020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.