×

Asymptotic expansions of the Witten-Reshetikhin-Turaev invariants of mapping tori. I. (English) Zbl 1461.57005

In its simplest form, a \((d+1)\)-dimensional topological quantum field theory (TQFT) associates a vector space to \(d\)-dimensional manifolds and a vector to a \((d+1)\)-dimensional manifold with boundary (in the vector space associated to the boundary) satisfying Atiyah’s axioms [M. Atiyah, Publ. Math., Inst. Hautes Étud. Sci. 68, 175–186 (1988; Zbl 0692.53053)]; it defines a (modular) functor from the category whose objects are \(d\)-dimensional manifolds (perhaps with extra structure) and morphisms are cobordisms, to the category of vector spaces.
It is by now well-established that the three main ways of defining the Witten-Reshetikhin-Turaev (WRT) 2+1-dimensional TQFT are equivalent for \(SU(n)\), namely via the representation theory of quantum groups (or equivalent combinatorics, initially for \(U_qsl_2\), cf. N. Yu. Reshetikhin and V. G. Turaev [Commun. Math. Phys. 127, No. 1, 1–26 (1990; Zbl 0768.57003); Invent. Math. 103, No. 3, 547–597 (1991; Zbl 0725.57007)]), via conformal field theory (conformal blocks of the Wess-Zumino-Witten model, A. Tsuchiya, K. Ueno and Y. Yamada [Adv. Stud. Pure Math. 19, 459–566 (1989; Zbl 0696.17010)], J. E. Andersen and K. Ueno [Invent. Math. 201, No. 2, 519–559 (2015; Zbl 1328.57030)]) and via Witten-Chern-Simons theory, by which we mean gauge theoretic constructions (geometric quantisation, N. J. Hitchin [Commun. Math. Phys. 131, No. 2, 347–380 (1990; Zbl 0718.53021)], S. Axelrod et al. [J. Differ. Geom. 33, No. 3, 787–902 (1991; Zbl 0697.53061)] making rigorous Witten’s path integral with Chern-Simons action [E. Witten, Commun. Math. Phys. 121, No. 3, 351–399 (1989; Zbl 0667.57005)]. The theory is defined from the data of an integer \(k\) (appearing in CFT as the level or as a multiplicative parameter in the phase defined by the path-integral action) and a simple Lie group \(G\) (here \(SU(n)\)), while the root of unity \(q\) in the quantum group picture is related by \(q=e^{\frac{2\pi{}i}{k+c^\vee_G}}\); here \(c^\vee_G\) is the dual Coxeter number of \(G\) (here \(n\)). The identification of the presentations was proved in [Y. Laszlo, J. Differ. Geom. 49, No. 3, 547–576 (1998; Zbl 0987.14027)] along with a series of papers of J. E. Andersen and K. Ueno [J. Knot Theory Ramifications 16, No. 2, 127–202 (2007; Zbl 1123.81041); Quantum Topol. 3, No. 3–4, 255–291 (2012; Zbl 1263.57025)].
The theory ‘evaluates’ to give a (finite-dimensional) Hilbert space \(Z(\Sigma)\) associated to a 2-dimensional surface \(\Sigma\) with marked points (and the extra data of an element of the centre \(Z(G)\) at each marked point) and a vector \(Z(M)\) in this space, associated to a 3-dimensional manifold \(M\) (with boundary \(\Sigma\)) containing links (with boundary at those marked points) or (in the case of empty boundary) a scalar invariant associated with a link inside a (compact connected oriented) 3-manifold. This evaluation is the Jones polynomial of links, for links in \(S^3\), and the Witten-Reshetikhin-Turaev invariant of 3-manifolds, for the pair of an empty link in a closed 3-manifold (for \(g=sl_2\)).
The formulation of the WRT TQFT via the Witten-Chern-Simons path integral \(\int_{\mathcal A}e^{\frac{ik}{4\pi}CS(A)}DA\) where the integral is over \(G\)-connections \(A\) over the manifold (up to gauge equivalence) and \(CS(A)\) is the Chern-Simons invariant of \(A\), leads to the expectation of the existence of an asymptotic expansion in \(k^{-1}\) for large \(k\), known as the asymptotic expansion conjecture. Various results are known.
The current paper deals with the case of \(G=SU(n)\) with \(\Sigma\) being a once-punctured torus of genus at least two. Let \(\mathcal{M}\) denote the moduli space of flat \(SU(N)\) connections on \(\Sigma\) (with fixed holonomy around the puncture); by the Narasimhan-Seshadri theorem [M. S. Narasimhan and C. S. Seshadri, Math. Ann. 155, 69–80 (1964; Zbl 0122.16701)], this is a compact, simply connected, symplectic manifold (denote the dimension as \(2n_0\)) with Kähler structure induced by a choice of complex structure \(\sigma\) on \(\Sigma\). The Hilbert space \(Z(\Sigma)\) is identified as \(H^0(\mathcal{M}_\sigma,\mathcal{L}^{\otimes{}k})\) where \(\mathcal{L}\) is the Chern-Simons line bundle; it is the fibre of the Verlinde bundle over the point \(\sigma\) in Teichmüller space, on which the Hitchin connection provides a (projectively) flat connection.
An element \(\phi\) of the mapping class group \(\Gamma\) of \(\Sigma\) determines a mapping torus by identifying the boundary components of \(\Sigma\times[0,1]\) via \(\phi\). Also \(\phi\) acts on \(\mathcal{M}\) and this lifts to an action \(Z^{(k)}_{CS}(\phi)\) on the Verlinde bundle whose trace is, by the axioms of TQFT, the WRT invariant of the mapping torus. The paper under review uses a delicate analysis of general oscillatory integrals to provide an asymptotic expansion of this trace in more general cases than was previously accessible. Set \(r=k+n\) and let \(\mathcal{M}^\phi\subset\mathcal{M}\) denote the fixed point set of \(\phi\).
(1) For any \(N\in\mathbb{N}\), \[tr(Z^{(k)}_{CS}(\phi))=r^{n_0}\sum_{n=0}^Nr^{-n}\int_{\mathcal{M}}e^{rP_\phi}\Omega_n+O(k^{n_0-N-1})\] where \(P_\phi:\mathcal{M}\to\mathbb{C}/2\pi{}i\mathbb{Z}\) is a smooth function, real analytic near \(\mathcal{M}_\phi\) with strictly negative real part away from \(\mathcal{M}^\phi\), while \(\Omega_m\) (\(m\geq0\)) are top-dimensional smooth forms on \(\mathcal{M}\). Every point in \(\mathcal{M}^\phi\) is a stationary point of \(P_\phi\), with corresponding stationary value \(2\pi{}i\) times the value of the Chern-Simons action.
This holds without restriction on the mapping class \(\phi\). Using a stationary phase approximation (Theorem 1.4) for certain general oscillatory integrals of the form \(\int_{\mathbf{R}^n}e^{kf(x)}\phi(x)dx\) based on work of Hörmander and Malgrange, they then deduce the following results.
(2a) If \(\mathcal{M}^\phi\) is cut out transversely (that is, any connected component \(Y\) of \(\mathcal{M}^\phi\) is smooth and satisfies \(TY=Ker(d\phi-I)|_Y\)) then \[tr(Z^{(k)}_{CS}(\phi))\sim\sum_je^{2\pi{}ir\theta_j}r^{m_j}\sum_{\alpha=0}^\infty{}r^{-\alpha/2}\int_{\mathcal{M}^\phi}\Sigma_\alpha^j\] where \(\{\theta_j\}\) are the critical Chern-Simons values and correspondingly \(2m_j=\max_z\left(\dim(\ker(d\phi_z-I))\right)\) amongst \(z\in\mathcal{M}^\phi\) for which \(P_\phi(z)=2\pi{}i\theta_j\); and \(\Omega_\alpha^j\) are suitable differential forms on \(\mathcal{M}^\phi\).
(2b) Under the further assumption on \(\phi\), that for every \(z\in\mathcal{M}^\phi\) either (a) \(z\) is a smooth point with \(T_z\mathcal{M}^\phi=\ker(d\phi_z-I)\) or (b) \(\dim\ker(d\phi_z-I)\leq1\) or (c) \(z\) is an isolated stationary point of the germ of the holomorphic extension of \(P_\phi\) to a neighbourhood of \(z\) in \(\mathcal{M}\), there is an asymptotic expansion \[tr(Z^{(k)}_{CS}(\phi)\sim\sum_je^{2\pi{}ir\theta_j}r^{n_j} \sum_{\alpha\in{}A_j,\beta\in{}B_j}c_{\alpha,\beta}r^\alpha(\ln{r})^\beta\] where \(n_j\) are non-negative rationals, each \(B_j\) is a finite set of natural numbers and each \(A_j\) is a union of finitely many (one-sided infinite) arithmetic progressions of non-positive rational numbers.
(3) Without the assumption of being cut out transversally, they show for the case of the moduli space \(\mathcal{M}_l\) of flat SU(2) connections on a once-punctured (genus 1) torus whose holonomy around the puncture has trace \(l\in(-2,2)\), that the same form of asymptotic expansion as in (2b) applies under the conditions of (2b) alone. They also explicitly construct an example of \(\phi\in\Gamma_1^1\) for which \(\mathcal{M}_{-1/4}^\phi\) is not transversally cut out, but the conditions here do still hold.

MSC:

57K31 Invariants of 3-manifolds (including skein modules, character varieties)
53D50 Geometric quantization
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces

References:

[1] Atiyah, M. F.; Bott, R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, 308, 1505, 523-615 (1983) · Zbl 0509.14014 · doi:10.1098/rsta.1983.0017
[2] Axelrod, Scott; Della Pietra, Steve; Witten, Edward, Geometric quantization of Chern-Simons gauge theory, J. Differential Geom., 33, 3, 787-902 (1991) · Zbl 0697.53061
[3] Andersen, J\o rgen Ellegaard; Gammelgaard, Niels Leth; Lauridsen, Magnus Roed, Hitchin’s connection in metaplectic quantization, Quantum Topol., 3, 3-4, 327-357 (2012) · Zbl 1253.53087 · doi:10.4171/qt/31
[4] Arnold, V. I.; Gusein-Zade, S. M.; Varchenko, A. N., Singularities of differentiable maps. Volume 2, Modern Birkh\`“{a}user Classics, x+492 pp. (2012), Birkh\'”{a}user/Springer, New York · Zbl 1297.32001
[5] Andersen, J\o rgen Ellegaard; Himpel, Benjamin, The Witten-Reshetikhin-Turaev invariants of finite order mapping tori II, Quantum Topol., 3, 3-4, 377-421 (2012) · Zbl 1260.57024 · doi:10.4171/qt/33
[6] Andersen, J\o rgen Ellegaard; Himpel, Benjamin; J\o rgensen, S\o ren Fuglede; Martens, Johan; McLellan, Brendan, The Witten-Reshetikhin-Turaev invariant for links in finite order mapping tori I, Adv. Math., 304, 131-178 (2017) · Zbl 1352.30039 · doi:10.1016/j.aim.2016.08.042
[7] AndersenGammelgaard14 J. E. Andersen and N. Leth Gammelgaard, The Hitchin-Witten connection and complex quantum Chern-Simons theory, arXiv:1409.1035 (2014).
[8] Andersen, J\o rgen Ellegaard; Masulli, Paolo; Sch\"{a}tz, Florian, Formal connections for families of star products, Comm. Math. Phys., 342, 2, 739-768 (2016) · Zbl 1337.53101 · doi:10.1007/s00220-016-2574-2
[9] Andersen, J\o rgen Ellegaard, Asymptotic faithfulness of the quantum \({\rm SU}(n)\) representations of the mapping class groups, Ann. of Math. (2), 163, 1, 347-368 (2006) · Zbl 1157.53049 · doi:10.4007/annals.2006.163.347
[10] Andersen, J\o rgen Ellegaard, Hitchin’s connection, Toeplitz operators, and symmetry invariant deformation quantization, Quantum Topol., 3, 3-4, 293-325 (2012) · Zbl 1268.53098 · doi:10.4171/qt/30
[11] Andersen, J\o rgen Ellegaard, The Witten-Reshetikhin-Turaev invariants of finite order mapping tori I, J. Reine Angew. Math., 681, 1-38 (2013) · Zbl 1305.57023 · doi:10.1515/crelle-2012-0033
[12] ASP16 J. E. Andersen and N. Skovgaard Poulsen, The curvature of the Hitchin connection, arXiv:1609.01243 (2016).
[13] Andersen, J\o rgen Ellegaard; Skovgaard Poulsen, Niccolo, Coordinates for the universal moduli space of holomorphic vector bundles. Quantum geometry of moduli spaces with applications to TQFT and RNA folding, Trav. Math. 25, 9-39 (2017), Fac. Sci. Technol. Commun. Univ. Luxemb., Luxembourg · Zbl 1375.32026
[14] ASP18 J. E. Andersen and N. Skovgaard Poulsen, An explicit Ricci potential for the universal moduli space of vector bundles, arXiv:1609.01242 (2016). Asian J. Math. (to appear).
[15] AR J. E. Andersen and K. Rasmussen, “A Hitchin connection for a large class of families of K\'”ahler structures“, in Geometry and physics: A festschrift in honour of Nigel Hitchin, edited by J. Ellegaard Andersen, A. Dancer, and O. Garc\'”ia-Prada, Oxford University Press, New York, 2018. · Zbl 1408.14005
[16] Atiyah, Michael, Topological quantum field theories, Inst. Hautes \'{E}tudes Sci. Publ. Math., 68, 175-186 (1989) (1988) · Zbl 0692.53053
[17] Andersen, J\o rgen Ellegaard; Ueno, Kenji, Abelian conformal field theory and determinant bundles, Internat. J. Math., 18, 8, 919-993 (2007) · Zbl 1128.81026 · doi:10.1142/S0129167X07004369
[18] Andersen, J\o rgen Ellegaard; Ueno, Kenji, Geometric construction of modular functors from conformal field theory, J. Knot Theory Ramifications, 16, 2, 127-202 (2007) · Zbl 1123.81041 · doi:10.1142/S0218216507005233
[19] Andersen, J\o rgen Ellegaard; Ueno, Kenji, Modular functors are determined by their genus zero data, Quantum Topol., 3, 3-4, 255-291 (2012) · Zbl 1263.57025 · doi:10.4171/qt/29
[20] Andersen, J\o rgen Ellegaard; Ueno, Kenji, Construction of the Witten-Reshetikhin-Turaev TQFT from conformal field theory, Invent. Math., 201, 2, 519-559 (2015) · Zbl 1328.57030 · doi:10.1007/s00222-014-0555-7
[21] Boutet de Monvel, L.; Guillemin, V., The spectral theory of Toeplitz operators, Annals of Mathematics Studies 99, v+161 pp. (1981), Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo · Zbl 0469.47021 · doi:10.1515/9781400881444
[22] Boutet de Monvel, L.; Sj\`“{o}strand, J., Sur la singularit\'”{e} des noyaux de Bergman et de Szeg\H{o}. Journ\'{e}es: \'{E}quations aux D\'{e}riv\'{e}es Partielles de Rennes (1975), 123-164. Ast\'{e}risque, No. 34-35 (1976), Soc. Math. France, Paris · Zbl 0344.32010
[23] Berry, M. V.; Howls, C. J., Hyperasymptotics, Proc. Roy. Soc. London Ser. A, 430, 1880, 653-668 (1990) · Zbl 0745.34052 · doi:10.1098/rspa.1990.0111
[24] Berry, M. V.; Howls, C. J., Hyperasymptotics for integrals with saddles, Proc. Roy. Soc. London Ser. A, 434, 1892, 657-675 (1991) · Zbl 0764.30031 · doi:10.1098/rspa.1991.0119
[25] Blanchet, C.; Habegger, N.; Masbaum, G.; Vogel, P., Three-manifold invariants derived from the Kauffman bracket, Topology, 31, 4, 685-699 (1992) · Zbl 0771.57004 · doi:10.1016/0040-9383(92)90002-Y
[26] Blanchet, C.; Habegger, N.; Masbaum, G.; Vogel, P., Topological quantum field theories derived from the Kauffman bracket, Topology, 34, 4, 883-927 (1995) · Zbl 0887.57009 · doi:10.1016/0040-9383(94)00051-4
[27] Bolte, Jens; Keppeler, Stefan, Semiclassical time evolution and trace formula for relativistic spin-\(1/2\) particles, Phys. Rev. Lett., 81, 10, 1987-1991 (1998) · Zbl 0947.81020 · doi:10.1103/PhysRevLett.81.1987
[28] Blanchet, Christian, Hecke algebras, modular categories and \(3\)-manifolds quantum invariants, Topology, 39, 1, 193-223 (2000) · Zbl 0938.57009 · doi:10.1016/S0040-9383(98)00066-4
[29] Bordemann, Martin; Meinrenken, Eckhard; Schlichenmaier, Martin, Toeplitz quantization of K\"{a}hler manifolds and \({\rm gl}(N), N\to\infty\) limits, Comm. Math. Phys., 165, 2, 281-296 (1994) · Zbl 0813.58026
[30] Brown, Richard J., Anosov mapping class actions on the \({\rm SU}(2)\)-representation variety of a punctured torus, Ergodic Theory Dynam. Systems, 18, 3, 539-554 (1998) · Zbl 0966.37008 · doi:10.1017/S0143385798108258
[31] Charles, Laurent, A Lefschetz fixed point formula for symplectomorphisms, J. Geom. Phys., 60, 12, 1890-1902 (2010) · Zbl 1204.53065 · doi:10.1016/j.geomphys.2010.07.002
[32] Charles, Laurent, Asymptotic properties of the quantum representations of the mapping class group, Trans. Amer. Math. Soc., 368, 10, 7507-7531 (2016) · Zbl 1337.57050 · doi:10.1090/tran6680
[33] Chun17 S. Chun, A resurgence analysis of the \(SU(2)\) Chern-Simons partition functions on a Brieskorn homology sphere \(\Sigma (2,5,7)\), arXiv:1701.03528 (2017).
[34] Charles, L.; March\'{e}, J., Knot state asymptotics I: AJ conjecture and Abelian representations, Publ. Math. Inst. Hautes \'{E}tudes Sci., 121, 279-322 (2015) · Zbl 1323.57007 · doi:10.1007/s10240-015-0068-y
[35] Charles, L.; March\'{e}, J., Knot state asymptotics II: Witten conjecture and irreducible representations, Publ. Math. Inst. Hautes \'{E}tudes Sci., 121, 323-361 (2015) · Zbl 1325.57008 · doi:10.1007/s10240-015-0069-x
[36] Delabaere, E.; Howls, C. J., Global asymptotics for multiple integrals with boundaries, Duke Math. J., 112, 2, 199-264 (2002) · Zbl 1060.30049 · doi:10.1215/S0012-9074-02-11221-6
[37] Dingle, R. B., Asymptotic expansions: Their derivation and interpretation, xv+521 pp. (1973), Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London\textendash New York · Zbl 0279.41030
[38] DunneUnsal15 G. V. Dunne and M. Unsal, What is QFT? Resurgent trans-series, Lefschetz thimbles, and new exact saddles, arXiv:1511.05977 (2015).
[39] DaskalopoulosWentworth G. D. Daskalopoulos and R. A. Wentworth, “Geometric quantization for the moduli space of vector bundles with parabolic structure”, in Geometry, topology and physics (Campinas, 1996), de Gruyter, Berlin, 1997, pp. 119-155. · Zbl 0929.53049
[40] \'{E}calle, Jean, Les fonctions r\'{e}surgentes. Tome I, Publications Math\'{e}matiques d’Orsay 81 [Mathematical Publications of Orsay 81] 5, 247 pp. (1981), Universit\'{e} de Paris-Sud, D\'{e}partement de Math\'{e}matique, Orsay · Zbl 0499.30034
[41] \'{E}calle, Jean, Les fonctions r\'{e}surgentes. Tome II, Publications Math\'{e}matiques d’Orsay 81 [Mathematical Publications of Orsay 81] 6, 248-531 (1981), Universit\'{e} de Paris-Sud, D\'{e}partement de Math\'{e}matique, Orsay · Zbl 0499.30035
[42] Freed, Daniel S., Classical Chern-Simons theory. I, Adv. Math., 113, 2, 237-303 (1995) · Zbl 0844.58039 · doi:10.1006/aima.1995.1039
[43] Garoufalidis, Stavros, Chern-Simons theory, analytic continuation and arithmetic, Acta Math. Vietnam., 33, 3, 335-362 (2008) · Zbl 1189.57010
[44] GukovMarinoPutrov S. Gukov, M. Marino, and P. Putrov, Resurgence in complex Chern-Simons theory, arXiv:1605.07615 (2016).
[45] Goldman, William M., The symplectic nature of fundamental groups of surfaces, Adv. in Math., 54, 2, 200-225 (1984) · Zbl 0574.32032 · doi:10.1016/0001-8708(84)90040-9
[46] Goldman, William M., Ergodic theory on moduli spaces, Ann. of Math. (2), 146, 3, 475-507 (1997) · Zbl 0907.57009 · doi:10.2307/2952454
[47] GalassoPaolette18 A. Galasso and R. Paoletti, Equivariant asymptotics of Szeg\Ho kernels under Hamiltonian \(SU(2)\)-action, arXiv:1805.00637 (2018).
[48] Hikami, Kazuhiro, Quantum invariant, modular form, and lattice points, Int. Math. Res. Not., 3, 121-154 (2005) · Zbl 1075.57005 · doi:10.1155/IMRN.2005.121
[49] Hitchin, N. J., Flat connections and geometric quantization, Comm. Math. Phys., 131, 2, 347-380 (1990) · Zbl 0718.53021
[50] H\"{o}rmander, Lars, The analysis of linear partial differential operators. I, Classics in Mathematics, x+440 pp. (2003), Springer-Verlag, Berlin · Zbl 1028.35001 · doi:10.1007/978-3-642-61497-2
[51] Howls, C. J., Hyperasymptotics for multidimensional integrals, exact remainder terms and the global connection problem, Proc. Roy. Soc. London Ser. A, 453, 1966, 2271-2294 (1997) · Zbl 1067.58501 · doi:10.1098/rspa.1997.0122
[52] Ioos L. Ioos, Quantization of symplectic maps and Witten’s asymptotic conjecture, arXiv:1810.03589 (2018). · Zbl 1419.53080
[53] Joerg S. F. Jrgensen, Semiclassical properties of the quantum representations of mapping class groups, 2013. Thesis (Ph.D.)\textendash Aarhus University.
[54] Jones, Vaughan F. R., A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.), 12, 1, 103-111 (1985) · Zbl 0564.57006 · doi:10.1090/S0273-0979-1985-15304-2
[55] Jones, V. F. R., Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2), 126, 2, 335-388 (1987) · Zbl 0631.57005 · doi:10.2307/1971403
[56] Kontsevich12 M. Kontsevich, Resurgence from the path integral perspective, Perimeter Institute (2015).
[57] Karabegov, Alexander V.; Schlichenmaier, Martin, Identification of Berezin-Toeplitz deformation quantization, J. Reine Angew. Math., 540, 49-76 (2001) · Zbl 0997.53067 · doi:10.1515/crll.2001.086
[58] Laszlo, Yves, Hitchin’s and WZW connections are the same, J. Differential Geom., 49, 3, 547-576 (1998) · Zbl 0987.14027
[59] Lawrence, Ruth; Zagier, Don, Modular forms and quantum invariants of \(3\)-manifolds, Asian J. Math., 3, 1, 93-107 (1999) · Zbl 1024.11028 · doi:10.4310/AJM.1999.v3.n1.a5
[60] Malgrange, Bernard, Int\'{e}grales asymptotiques et monodromie, Ann. Sci. \'{E}cole Norm. Sup. (4), 7, 405-430 (1975) (1974) · Zbl 0305.32008
[61] Mehta, V. B.; Seshadri, C. S., Moduli of vector bundles on curves with parabolic structures, Math. Ann., 248, 3, 205-239 (1980) · Zbl 0454.14006 · doi:10.1007/BF01420526
[62] Narasimhan, M. S.; Seshadri, C. S., Holomorphic vector bundles on a compact Riemann surface, Math. Ann., 155, 69-80 (1964) · Zbl 0122.16701 · doi:10.1007/BF01350891
[63] Olver, F. W. J., Asymptotics and special functions, xvi+572 pp. (1974), Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York\textendash London · Zbl 0303.41035
[64] Pauly, Christian, Espaces de modules de fibr\'{e}s paraboliques et blocs conformes, Duke Math. J., 84, 1, 217-235 (1996) · Zbl 0877.14031 · doi:10.1215/S0012-7094-96-08408-2
[65] Penner, Robert C., A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc., 310, 1, 179-197 (1988) · Zbl 0706.57008 · doi:10.2307/2001116
[66] Pham, Fr\'{e}d\'{e}ric, Vanishing homologies and the \(n\) variable saddlepoint method. Singularities, Part 2, Arcata, Calif., 1981, Proc. Sympos. Pure Math. 40, 319-333 (1983), Amer. Math. Soc., Providence, RI · Zbl 0519.49026
[67] Reshetikhin, N. Yu.; Turaev, V. G., Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys., 127, 1, 1-26 (1990) · Zbl 0768.57003
[68] Reshetikhin, N.; Turaev, V. G., Invariants of \(3\)-manifolds via link polynomials and quantum groups, Invent. Math., 103, 3, 547-597 (1991) · Zbl 0725.57007 · doi:10.1007/BF01239527
[69] Schlichenmaier, Martin, Deformation quantization of compact K\`“{a}hler manifolds by Berezin-Toeplitz quantization. Conf\'”{e}rence Mosh\'{e} Flato 1999, Vol. II (Dijon), Math. Phys. Stud. 22, 289-306 (2000), Kluwer Acad. Publ., Dordrecht · Zbl 1028.53085
[70] Schlichenmaier, Martin, Berezin-Toeplitz quantization and Berezin transform. Long time behaviour of classical and quantum systems, Bologna, 1999, Ser. Concr. Appl. Math. 1, 271-287 (2001), World Sci. Publ., River Edge, NJ · Zbl 0983.81035 · doi:10.1142/9789812794598\_0015
[71] Turaev, Vladimir G., Quantum invariants of knots and \(3\)-manifolds, De Gruyter Studies in Mathematics 18, xii+592 pp. (2010), Walter de Gruyter & Co., Berlin · Zbl 1213.57002 · doi:10.1515/9783110221848
[72] Tsuchiya, Akihiro; Ueno, Kenji; Yamada, Yasuhiko, Conformal field theory on universal family of stable curves with gauge symmetries. Integrable systems in quantum field theory and statistical mechanics, Adv. Stud. Pure Math. 19, 459-566 (1989), Academic Press, Boston, MA · Zbl 0696.17010
[73] Zograf, P. G.; Takhtadzhyan, L. A., A local index theorem for families of \(\overline\partial \)-operators on Riemann surfaces, Uspekhi Mat. Nauk, 42, 6(258), 133-150, 248 (1987) · Zbl 0659.58043
[74] Takhtajan, L. A.; Zograf, P. G., The Selberg zeta function and a new K\"{a}hler metric on the moduli space of punctured Riemann surfaces, J. Geom. Phys., 5, 4, 551-570 (1989) (1988) · Zbl 0739.30032 · doi:10.1016/0393-0440(88)90019-8
[75] ZT89 L. A. Takhtajan and P. G. Zograf, The geometry of moduli spaces of vector bundles over a Riemann surface, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 4, 753-770, 911. · Zbl 0689.53037
[76] Takhtajan, L. A.; Zograf, P. G., A local index theorem for families of \(\overline\partial \)-operators on punctured Riemann surfaces and a new K\"{a}hler metric on their moduli spaces, Comm. Math. Phys., 137, 2, 399-426 (1991) · Zbl 0725.58043
[77] Vasil\cprime ev, V. A., Asymptotic behavior of exponential integrals in the complex domain, Funktsional. Anal. i Prilozhen., 13, 4, 1-12, 96 (1979) · Zbl 0429.32004
[78] Var\v{c}enko, A. N., Newton polyhedra and estimates of oscillatory integrals, Funkcional. Anal. i Prilo\v{z}en., 10, 3, 13-38 (1976)
[79] Witten, Edward, Quantum field theory and the Jones polynomial, Comm. Math. Phys., 121, 3, 351-399 (1989) · Zbl 0667.57005
[80] Witten, Edward, Analytic continuation of Chern-Simons theory. Chern-Simons gauge theory: 20 years after, AMS/IP Stud. Adv. Math. 50, 347-446 (2011), Amer. Math. Soc., Providence, RI · Zbl 1337.81106
[81] Zelditch, Steven, Index and dynamics of quantized contact transformations, Ann. Inst. Fourier (Grenoble), 47, 1, 305-363 (1997) · Zbl 0865.47018
[82] Zelditch, Steve, Szeg\H{o} kernels and a theorem of Tian, Internat. Math. Res. Notices, 6, 317-331 (1998) · Zbl 0922.58082 · doi:10.1155/S107379289800021X
[83] Zelditch, Steve, Quantum maps and automorphisms. The breadth of symplectic and Poisson geometry, Progr. Math. 232, 623-654 (2005), Birkh\"{a}user Boston, Boston, MA · Zbl 1077.53076 · doi:10.1007/0-8176-4419-9\_22
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.