×

A mathematical bridge between discretized gauge theories in quantum physics and approximate reasoning in pairwise comparisons. (English) Zbl 1440.81064

Summary: We describe a mathematical link between aspects of information theory, called pairwise comparisons, and discretized gauge theories. The link is made by the notion of holonomy along the edges of a simplex. This correspondence leads to open questions in both fields.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] Koczkodaj, W. W.; Magnot, J-P.
[2] Magnot, J.-P., On pairwise comparisons with values in a group: algebraic structures, (2016)
[3] Magnot, J.-P., Remarks on a new possible discretization scheme for gauge theories · Zbl 1423.70062
[4] Koczkodaj, W. W.; Szybowski, J.; Wajch, E., Inconsistency indicator maps on groups for pairwise comparisons, International Journal of Approximate Reasoning, 69, 81-90, (2016) · Zbl 1415.91093 · doi:10.1016/j.ijar.2015.11.007
[5] Duszak, Z.; Koczkodaj, W. W., Generalization of a new definition of consistency for pairwise comparisons, Information Processing Letters, 52, 5, 273-276, (1994) · Zbl 0815.68084 · doi:10.1016/0020-0190(94)00155-3
[6] Koczkodaj, W. W., A new definition of consistency of pairwise comparisons, Mathematical and Computer Modelling, 18, 7, 79-84, (1993) · Zbl 0804.92029 · doi:10.1016/0895-7177(93)90059-8
[7] Koczkodaj, W. W.; Szwarc, R., On axiomatization of inconsistency indicators for pairwise comparisons, Fundamenta Informaticae, 132, 4, 485-500, (2014) · Zbl 1303.91063 · doi:10.3233/FI-2014-1055
[8] Albeverio, S.; Høegh-Krohn, R., Brownian Motion, Markov Cosurfaces, Higgs Fields, Fundamental Aspects of Quantum Theory. Fundamental Aspects of Quantum Theory, NATO ASI Series, 144, 95-104, (1986), Boston, MA: Springer US, Boston, MA · doi:10.1007/978-1-4684-5221-1_10
[9] Albeverio, S.; Hoegh-Krohn, R.; Holden, H., Markov cosurfaces and gauge fields, Acta Physica Austriaca, Supplement 26, 211-231, (1984) · Zbl 0541.60093
[10] Albeverio, S. A.; Høegh-Krohn, R. J.; Mazzuchi, S., Mathematical Theory of Feynman Path Integrals; An Introduction. Mathematical Theory of Feynman Path Integrals; An Introduction, Lecture Notes in Mathematics 523, 523, (2005), Springer
[11] Albeverio, S.; Zegarlinski, B., Construction of convergent simplicial approximations of quantum fields on Riemannian manifolds, Communications in Mathematical Physics, 132, 1, 39-71, (1990) · Zbl 0708.60101 · doi:10.1007/BF02277999
[12] Hahn, A., The Wilson loop observables of Chern-Simons theory on ℝ3 in axial gauge, Communications in Mathematical Physics, 248, 3, 467-499, (2004) · Zbl 1233.81032 · doi:10.1007/s00220-004-1097-4
[13] Huber, M. Q.; Campagnari, D. R.; Reinhardt, H., Vertex functions of Coulomb gauge Yang-Mills theory, Physical Review D: Particles, Fields, Gravitation and Cosmology, 91, article 025014, 2, (2015) · doi:10.1103/PhysRevD.91.025014
[14] Lim, A. P., Non-abelian gauge theory for Chern-Simons path i ntegral on R3, Journal of Knot Theory and Its Ramifications, 21, article 1250039, 04, (2012) · Zbl 1236.81154
[15] Reinhardt, H., Yang-Mills in axial gauge, Physical Review, 55, 2331-2346, (1997)
[16] Rovelli, C.; Vidotto, F., Covariant Loop Quantum Gravity, (2014), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1432.81065 · doi:10.1017/CBO9781107706910
[17] Sen, S.; Sen, S.; Sexton, J. C.; Adams, D. H., Geometric discretization scheme applied to the Abelian Chern-Simons theory, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 61, 3, 3174-3185, (2000) · doi:10.1103/PhysRevE.61.3174
[18] Sengupta, A. N.; Anderson, J.; Boden, H. U.; Hahn, A.; Himpel, B., Yang-Mills in two dimensions and Chern-Simons in three, Chern-Simons Theory: 20 years after, 311-320, (2011), AMS/IP Studies in Advanced Mathematics · Zbl 1219.00023
[19] Sengupta, A. N., Connections over two-dimensional cell complexes, Reviews in Mathematical Physics, 16, 3, 331-352, (2004) · Zbl 1062.53071 · doi:10.1142/S0129055X04002011
[20] Whitney, H., Geometric Integration Theory, (1957), Princeton, NJ, USA: Princeton University Press, Princeton, NJ, USA · Zbl 0083.28204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.