×

Robust moving mesh algorithms for hybrid stretched meshes: application to moving boundaries problems. (English) Zbl 1422.65244

Summary: A robust mesh-mover algorithm (MMA) approach is designed to adapt meshes of moving boundaries problems. A new methodology is developed from the best combination of well-known algorithms in order to preserve the quality of initial meshes. In most situations, MMAs distribute mesh deformation while preserving a good mesh quality. However, invalid meshes are generated when the motion is complex and/or involves multiple bodies. After studying a few MMA limitations, we propose the following approach: use the inverse distance weighting (IDW) function to produce the displacement field, then apply the geometric element transformation method (GETMe) smoothing algorithms to improve the resulting mesh quality, and use an untangler to revert negative elements. The proposed approach has been proven efficient to adapt meshes for various realistic aerodynamic motions: a symmetric wing that has suffered large tip bending and twisting and the high-lift components of a swept wing that has moved to different flight stages. Finally, the fluid flow problem has been solved on meshes that have moved and they have produced results close to experimental ones. However, for situations where moving boundaries are too close to each other, more improvements need to be made or other approaches should be taken, such as an overset grid method.

MSC:

65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
35R37 Moving boundary problems for PDEs

Software:

Eigen

References:

[1] Alauzet, F., A changing-topology moving mesh technique for large displacements, Eng. Comput., 30, 2, 175-200 (2014)
[2] Beckert, A.; Wendland, H., Multivariate interpolation for fluid-structure-interaction problems using radial basis functions, Aerosp. Sci. Technol., 5, 2, 125-134 (2001) · Zbl 1034.74018
[3] Benson, D. J., An efficient, accurate, simple ale method for nonlinear finite element programs, Comput. Methods Appl. Mech. Eng., 72, 3, 305-350 (1989) · Zbl 0675.73037
[4] Bonet, J.; Peraire, J., An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems, Int. J. Numer. Methods Eng., 31, 1, 1-17 (1991) · Zbl 0825.73958
[5] Broomhead, D. S.; Lowe, D., Radial basis functions, multi-variable functional interpolation and adaptive networks, (Royal Signals and Radar Establishment, Malvern (GB). Royal Signals and Radar Establishment, Malvern (GB), Coll. “RSRE Memorandum”, vol. 4148 (1988)) · Zbl 0657.68085
[6] de Aguiar, E.; Ukita, N., Representing mesh-based character animations, Comput. Graph., 38, 8 (2013)
[7] de Boer, A.; van der Schoot, M. S.; Bijl, H., Mesh deformation based on radial basis function interpolation, Comput. Struct., 85, 11-14, 784-795 (2007)
[8] Degand, C.; Farhat, C., A three-dimensional torsional spring analogy method for unstructured dynamic meshes, Comput. Struct., 80, 3-4, 305-316 (2002)
[9] Farhat, C.; Degand, C.; Koobus, B.; Lesoinne, M., Torsional springs for two-dimensional dynamic unstructured fluid meshes, Comput. Methods Appl. Mech. Eng., 163, 1, 231-245 (1998) · Zbl 0961.76070
[10] Farhat, C.; Koobus, B.; Tran, H., Simulation of vortex shedding dominated flows past rigid and flexible structures, (Computational Methods for Fluid-Structure Interaction. Computational Methods for Fluid-Structure Interaction, Trondheim, Norway (1999)), 1-30
[11] Franke, R., Scattered data interpolation: tests of some methods, Math. Comput., 38, 157, 181-200 (1982) · Zbl 0476.65005
[12] Guennebaud, G.; Jacob, B., Eigen is a \(C^{++}\) template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms (2010), Accessed December 5, 2014
[13] He, T.; Zhou, D., Vortex-induced vibrations of a flexible circular cylinder based on the CIBC method, (The Seventh International Colloquium on Bluff Body Aerodynamics and Applications. The Seventh International Colloquium on Bluff Body Aerodynamics and Applications, Shanghai, China, September 2-6 (2012)), 601-610
[14] Helenbrook, B. T., Mesh deformation using the biharmonic operator, Int. J. Numer. Methods Eng., 56, 7, 1007-1021 (2003) · Zbl 1047.76044
[15] Hughes, T., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice Hall International Paperback Editions · Zbl 0634.73056
[16] Johnson, A. A.; Tezduyar, T. E., Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput. Methods Appl. Mech. Eng., 119, 1, 73-94 (1994) · Zbl 0848.76036
[17] Knupp, P., Introducing the target-matrix paradigm for mesh optimization via node-movement, Eng. Comput., 28, 4, 419-429 (2012)
[18] Knupp, P. M., Algebraic mesh quality metrics, SIAM J. Sci. Comput., 23, 1, 193-218 (2001) · Zbl 0996.65101
[19] Landry, J., Robust moving-mesh algorithms for hybrid stretched meshes: application to moving boundary problems (2015), M.A.Sc. thesis, Montréal, Département de génie mécanique, École de technologie supérieure, 163 p
[20] Lefrançois, E., A simple mesh deformation technique for fluid-structure interaction based on a submesh approach, Int. J. Numer. Methods Eng., 75, 9, 1085-1101 (2008) · Zbl 1195.74185
[21] Löhner, R.; Yang, C., Improved ale mesh velocities for moving bodies, Commun. Numer. Methods Eng., 12, 10, 599-608 (1996) · Zbl 0858.76042
[22] Liu, Y.; Guo, Z.; Liu, J., RBFs-MSA hybrid method for mesh deformation, Chin. J. Aeronaut., 25, 4, 500-507 (2012)
[23] Luke, E.; Collins, E.; Blades, E., A fast mesh deformation method using explicit interpolation, J. Comput. Phys., 231, 2, 586-601 (2012) · Zbl 1426.76550
[24] Miwa, M.; Tani, K.; Yamada, T.; Wakao, S., A study of mesh deformation methods for magnetic field analysis, IEEJ Trans. Electr. Electron. Eng., 6, 5, 497-502 (2011)
[25] Rendall, T.; Allen, C., Unified fluid-structure interpolation and mesh motion using radial basis functions, Int. J. Numer. Methods Eng., 74, 10, 1519-1559 (2008) · Zbl 1159.74457
[26] Robinson, B. A.; Yang, H. T.; Batina, J. T., Aeroelastic analysis of wings using the Euler equations with a deforming mesh, J. Aircr., 28, 11, 781-788 (1991)
[27] Rumsey, C., High lift prediction workshop (2014), Online, accessed April 9, 2015
[28] Schreurs, P.; Veldpaus, F.; Brekelmans, W., Simulation of forming processes, using the arbitrary Eulerian-Lagrangian formulation, Comput. Methods Appl. Mech. Eng., 58, 1, 19-36 (1986) · Zbl 0595.73085
[29] Shepard, D., A two-dimensional interpolation function for irregularly-spaced data, (Proceedings of the 1968 23rd ACM National Conference (1968), ACM), 517-524
[30] Soulaïmani, A., Contribution à la résolution numérique des problèmes hydrodynamiques à surface libre (1987), Québec, Faculté des sciences et de génie, Universite Laval, 241 pp.
[31] Soulaïmani, A.; Fortin, M.; Dhatt, G.; Ouellet, Y., Finite element simulation of two-and three-dimensional free surface flows, Comput. Methods Appl. Mech. Eng., 86, 3, 265-296 (1991) · Zbl 0761.76037
[32] Steger, J. L.; Dougherty, F. C.; Benek, J. A., A chimera grid scheme, (Advances in Grid Generation: Proceedings of the Applied Mechanics, Bioengineering, and Fluids Engineering Conference (January 1 1983), American Society of Mechanical Engineers: American Society of Mechanical Engineers Houston, TX)
[33] Stein, K.; Tezduyar, T.; Benney, R., Mesh moving techniques for fluid-structure interactions with large displacements, J. Appl. Mech., 70, 1, 58-63 (2003) · Zbl 1110.74689
[34] Stein, K.; Tezduyar, T. E.; Benney, R., Automatic mesh update with the solid-extension mesh moving technique, Comput. Methods Appl. Mech. Eng., 193, 21, 2019-2032 (2004) · Zbl 1067.74587
[35] Tezduyar, T. E.; Behr, M.; Liou, J., New strategy for finite element computations involving moving boundaries and interfaces: the deforming-spatial-domain/space-time procedure, I: the concept and the preliminary numerical tests, Comput. Methods Appl. Mech. Eng., 94, 3, 339-351 (1992), Compilation and indexing terms, Copyright 2014 Elsevier Inc. 1992050473164 Deforming-Spatial-Domain/Space-Time Procedure Incompressible Navier-Stokes Equations Moving Boundaries · Zbl 0745.76044
[36] Vartziotis, D.; Himpel, B., Efficient mesh optimization using the gradient flow of the mean volume, SIAM J. Numer. Anal., 52, 2, 1050-1075 (2014) · Zbl 1322.65112
[37] Vartziotis, D.; Papadrakakis, M., Improved GETme by adaptive mesh smoothing, Comput. Assist. Methods Eng. Sci., 20, 55-71 (2013)
[38] Vartziotis, D.; Wipper, J., Fast smoothing of mixed volume meshes based on the effective geometric element transformation method, Comput. Methods Appl. Mech. Eng., 201, 204, 65-81 (2012) · Zbl 1239.65075
[39] Vartziotis, D.; Wipper, J.; Schwald, B., The geometric element transformation method for tetrahedral mesh smoothing, Comput. Methods Appl. Mech. Eng., 199, 1, 169-182 (2009) · Zbl 1231.74443
[40] Wilson, T. J., Simultaneous untangling and smoothing of hexahedral meshes (2011), Universitat Politècnica de Catalunya: Universitat Politècnica de Catalunya Barcelona, 62 p.
[41] Witteveen, J. A.; Bijl, H., Explicit mesh deformation using inverse distance weighting interpolation, (19th AIAA Computational Fluid Dynamics Conference. 19th AIAA Computational Fluid Dynamics Conference, San Antonio, Texas, June 22-25 (2009)), AIAA2009-3996
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.