×

A neural network based shock detection and localization approach for discontinuous Galerkin methods. (English) Zbl 07508429

Summary: The stable and accurate approximation of discontinuities such as shocks on a finite computational mesh is a challenging task. Detection of shocks or strong discontinuities in the flow solution is typically achieved through a priori troubled cell indicators, which guide the subsequent action of an appropriate shock capturing mechanism. Arriving at a stable and accurate solution often requires empirically based parameter tuning and adjustments of the indicator settings to the discretization and solution at hand. In this work, we propose to separate the task of shock detection and shock capturing more strongly and aim to develop a shock indicator that is robust, accurate, requires minimal user input and is suitable for high order element-based methods like discontinuous Galerkin and flux reconstruction methods. The novel indicator is learned from analytical data through a supervised learning strategy; its input is given by the high order solution field, its output is an element-local map of the shock position. We use state of the art methods from edge detection in image analysis based on deep convolutional multiscale networks and deep supervision to train the indicators. The resulting networks are then used as black box indicators, showing their robustness and accuracy on well established canonical testcases. All simulations are run ab initio using the developed indicators, showing that they provide also stability during the strongly transient phases. In particular for high order schemes with large cells and considerable inner-cell resolution capabilities, we demonstrate how the additional accurate prediction of the position of the shock front can be exploited to guide inner-element shock capturing strategies.

MSC:

68-XX Computer science
92-XX Biology and other natural sciences

Software:

ImageNet; Adam; FLEXI; AlexNet

References:

[1] Balsara, D. S.; Altmann, C.; Munz, C.-D.; Dumbser, M., A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes, J. Comput. Phys., 226, 1, 586-620 (2007) · Zbl 1124.65072
[2] Barron, A. R., Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inf. Theory, 39, 3, 930-945 (1993) · Zbl 0818.68126
[3] Barter, G. E.; Darmofal, D. L., Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation, J. Comput. Phys., 229, 5, 1810-1827 (2010) · Zbl 1329.76153
[4] Beck, A.; Flad, D.; Munz, C.-D., Deep neural networks for data-driven LES closure models, J. Comput. Phys., 398, Article 108910 pp. (2019)
[5] Beck, A. D.; Bolemann, T.; Flad, D.; Frank, H.; Gassner, G. J.; Hindenlang, F.; Munz, C.-D., High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations, Int. J. Numer. Methods Fluids, 76, 8, 522-548 (2014)
[6] Burbeau, A.; Sagaut, P.; Bruneau, C.-H., A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods, J. Comput. Phys., 169, 1, 111-150 (2001) · Zbl 0979.65081
[7] Cockburn, B.; Hou, S.; Shu, C.-W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: the multidimensional case, Math. Comput., 54, 190, 545-581 (1990) · Zbl 0695.65066
[8] Courant, R.; Friedrichs, K. O., Supersonic Flow and Shock Waves, vol. 21 (1999), Springer Science & Business Media
[9] Cybenko, G., Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst., 2, 4, 303-314 (1989) · Zbl 0679.94019
[10] Dolejší, V.; Feistauer, M.; Schwab, C., On some aspects of the discontinuous Galerkin finite element method for conservation laws, Math. Comput. Simul., 61, 3-6, 333-346 (2003) · Zbl 1013.65108
[11] Ducros, F.; Ferrand, V.; Nicoud, F.; Weber, C.; Darracq, D.; Gacherieu, C.; Poinsot, T., Large-eddy simulation of the shock/turbulence interaction, J. Comput. Phys., 152, 2, 517-549 (1999) · Zbl 0955.76045
[12] Dumbser, M.; Zanotti, O.; Loubère, R.; Diot, S., A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J. Comput. Phys., 278, 47-75 (2014) · Zbl 1349.65448
[13] Feistauer, M.; Kučera, V.; Prokopová, J., Discontinuous Galerkin solution of compressible flow in time-dependent domains, Math. Comput. Simul., 80, 8, 1612-1623 (2010) · Zbl 1425.76212
[14] Gottlieb, D.; Shu, C.-W., On the Gibbs phenomenon and its resolution, SIAM Rev., 39, 4, 644-668 (1997) · Zbl 0885.42003
[15] Han Veiga, M. M.; Abgrall, R., Towards a general stabilisation method for conservation laws using a multilayer perceptron neural network: 1D scalar and system of equations, (ECCM - ECFD 2018 6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) 7th European Conference on Computational Fluid Dynamics. ECCM - ECFD 2018 6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) 7th European Conference on Computational Fluid Dynamics, Glasgow, United Kingdom (June 2018))
[16] Hartmann, R.; Houston, P., Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, J. Comput. Phys., 183, 2, 508-532 (2002) · Zbl 1057.76033
[17] Haykin, S., Neural Networks: A Comprehensive Foundation (1994), Prentice Hall PTR · Zbl 0828.68103
[18] Hindenlang, F.; Gassner, G. J.; Altmann, C.; Beck, A.; Staudenmaier, M.; Munz, C.-D., Explicit discontinuous Galerkin methods for unsteady problems, Comput. Fluids, 61, 86-93 (2012) · Zbl 1365.76117
[19] Hornik, K., Approximation capabilities of multilayer feedforward networks, Neural Netw., 4, 2, 251-257 (1991)
[20] Huerta, A.; Casoni, E.; Peraire, J., A simple shock-capturing technique for high-order discontinuous Galerkin methods, Int. J. Numer. Methods Fluids, 69, 10, 1614-1632 (2012) · Zbl 1253.76058
[21] Ioffe, S.; Szegedy, C., Batch normalization: accelerating deep network training by reducing internal covariate shift (2015), arXiv preprint
[22] Jameson, A.; Schmidt, W.; Turkel, E., Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes, (14th Fluid and Plasma Dynamics Conference (1981)), 1259
[23] Kennedy, C. A.; Carpenter, M. H.; Lewis, R. M., Low-storage explicit Runge-Kutta schemes for the compressible Navier-Stokes equations, Appl. Numer. Math., 35, 3, 177-219 (2000) · Zbl 0986.76060
[24] Kingma, D. P.; Ba, J., Adam: a method for stochastic optimization (2014), arXiv preprint
[25] Klöckner, A.; Warburton, T.; Hesthaven, J. S., Viscous shock capturing in a time-explicit discontinuous Galerkin method, Math. Model. Nat. Phenom., 6, 3, 57-83 (2011) · Zbl 1220.65165
[26] Kopriva, D. A., Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers (2009), Springer Science & Business Media · Zbl 1172.65001
[27] Krais, N.; Beck, A.; Bolemann, T.; Frank, H.; Flad, D.; Gassner, G.; Hindenlang, F.; Hoffmann, M.; Kuhn, T.; Sonntag, M., Flexi: a high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws (2019), arXiv preprint
[28] Krivodonova, L., Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys., 226, 1, 879-896 (2007) · Zbl 1125.65091
[29] Krizhevsky, A.; Sutskever, I.; Hinton, G. E., Imagenet classification with deep convolutional neural networks, (Advances in Neural Information Processing Systems (2012)), 1097-1105
[30] LeCun, Y.; Bengio, Y., Convolutional networks for images, speech, and time series, The Handbook of Brain Theory and Neural Networks, 3361, 10, 1995 (1995)
[31] LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 7553, 436-444 (2015)
[32] LeCun, Y.; Boser, B. E.; Denker, J. S.; Henderson, D.; Howard, R. E.; Hubbard, W. E.; Jackel, L. D., Handwritten digit recognition with a back-propagation network, (Advances in Neural Information Processing Systems (1990)), 396-404
[33] LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P., Gradient-based learning applied to document recognition, Proc. IEEE, 86, 11, 2278-2324 (1998)
[34] Lee, C.-Y.; Xie, S.; Gallagher, P.; Zhang, Z.; Tu, Z., Deeply-supervised nets, (Artificial Intelligence and Statistics (2015)), 562-570
[35] LeVeque, R. J., Nonlinear conservation laws and finite volume methods, (Computational Methods for Astrophysical Fluid Flow (1998), Springer), 1-159 · Zbl 0931.76052
[36] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, vol. 31 (2002), Cambridge University Press · Zbl 1010.65040
[37] Liou, S.-P.; Singh, A.; Mehlig, S.; Edwards, D.; Davis, R., An image analysis based approach to shock identification in cfd, (33rd Aerospace Sciences Meeting and Exhibit (1995)), 117
[38] Liu, Y.; Cheng, M.-M.; Hu, X.; Wang, K.; Bai, X., Richer convolutional features for edge detection, (Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)), 3000-3009
[39] Liu, Y.; Lu, Y.; Wang, Y.; Sun, D.; Deng, L.; Wang, F.; Lei, Y., A cnn-based shock detection method in flow visualization, Comput. Fluids, 184, 1-9 (2019) · Zbl 1411.76125
[40] Lovely, D.; Haimes, R., Shock detection from computational fluid dynamics results, (14th Computational Fluid Dynamics Conference (1999)), 3285
[41] Lu, Z.; Pu, H.; Wang, F.; Hu, Z.; Wang, L., The expressive power of neural networks: a view from the width, (Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R., Advances in Neural Information Processing Systems 30 (2017), Curran Associates, Inc.), 6231-6239
[42] Lv, Y.; See, Y. C.; Ihme, M., An entropy-residual shock detector for solving conservation laws using high-order discontinuous Galerkin methods, J. Comput. Phys., 322, 448-472 (2016) · Zbl 1351.76068
[43] Maas, A. L.; Hannun, A. Y.; Ng, A. Y., Rectifier nonlinearities improve neural network acoustic models, (Proc. ICML, vol. 30 (2013)), 3
[44] Monfort, M.; Luciani, T.; Komperda, J.; Ziebart, B.; Mashayek, F.; Marai, G. E., A deep learning approach to identifying shock locations in turbulent combustion tensor fields, (Schultz, T.; Özarslan, E.; Hotz, I., Modeling, Analysis, and Visualization of Anisotropy. Modeling, Analysis, and Visualization of Anisotropy, Cham (2017), Springer International Publishing), 375-392
[45] Morgan, N. R.; Tokareva, S.; Liu, X.; Morgan, A., A machine learning approach for detecting shocks with high-order hydrodynamic methods, (AIAA Scitech 2020 Forum (2020)), 2024
[46] Paciorri, R.; Bonfiglioli, A., A shock-fitting technique for 2d unstructured grids, Comput. Fluids, 38, 3, 715-726 (2009)
[47] Pagendarm, H.-G.; Seitz, B., An algorithm for detection and visualization of discontinuities in scientific data fields applied to flow data with shock waves, (Scientific Visualization: Advanced Software Techniques (1993)), 161-177
[48] Persson, P.-O.; Peraire, J., Sub-cell shock capturing for discontinuous Galerkin methods, (44th AIAA Aerospace Sciences Meeting and Exhibit (2006)), 112
[49] Pirozzoli, S., Numerical methods for high-speed flows, Annu. Rev. Fluid Mech., 43, 163-194 (2011) · Zbl 1299.76103
[50] Premasuthan, S.; Liang, C.; Jameson, A., Computation of flows with shocks using the spectral difference method with artificial viscosity, I: basic formulation and application, Comput. Fluids, 98, 111-121 (2014) · Zbl 1391.76488
[51] Qiu, J.; Shu, C.-W., A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters, SIAM J. Sci. Comput., 27, 3, 995-1013 (2005) · Zbl 1092.65084
[52] Qiu, J.; Shu, C.-W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case, Comput. Fluids, 34, 6, 642-663 (2005) · Zbl 1134.65358
[53] Rabault, J.; Kuchta, M.; Jensen, A.; Réglade, U.; Cerardi, N., Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control, J. Fluid Mech., 865, 281-302 (2019) · Zbl 1415.76222
[54] Ray, D.; Hesthaven, J. S., An artificial neural network as a troubled-cell indicator, J. Comput. Phys., 367, 166-191 (2018) · Zbl 1415.65229
[55] Ray, D.; Hesthaven, J. S., Detecting troubled-cells on two-dimensional unstructured grids using a neural network, J. Comput. Phys., 397, Article 108845 pp. (2019) · Zbl 1453.65301
[56] Riemann, B., Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite (1860), Verlag der Dieterichschen Buchhandlung
[57] Rumelhart, D. E.; Hinton, G. E.; Williams, R. J., Learning representations by back-propagating errors, Nature, 323, 6088, 533 (1986) · Zbl 1369.68284
[58] Rusanov, V., Processing and analysis of computation results for multidimensional problems of aerohydrodynamics, (Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics (1973), Springer), 154-162 · Zbl 0255.76071
[59] Schmidhuber, J., Deep learning in neural networks: an overview, Neural Netw., 61, 85-117 (2015)
[60] Schulz-Rinne, C. W.; Collins, J. P.; Glaz, H. M., Numerical solution of the Riemann problem for two-dimensional gas dynamics, SIAM J. Sci. Comput., 14, 6, 1394-1414 (1993) · Zbl 0785.76050
[61] Sheshadri, A.; Jameson, A., Shock detection and capturing methods for high order discontinuous-Galerkin finite element methods, (32nd AIAA Applied Aerodynamics Conference (2014)), 2688
[62] Shu, C.-W., High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for cfd, Int. J. Comput. Fluid Dyn., 17, 2, 107-118 (2003) · Zbl 1034.76044
[63] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 2, 439-471 (1988) · Zbl 0653.65072
[64] Sonntag, M., Shape derivatives and shock capturing for the Navier-Stokes equations in discontinuous Galerkin methods (2017), University of Stuttgart, Dissertation
[65] Sonntag, M.; Munz, C.-D., Efficient parallelization of a shock capturing for discontinuous Galerkin methods using finite volume sub-cells, J. Sci. Comput., 70, 3, 1262-1289 (2017) · Zbl 1366.65089
[66] Van Veen, F.; Leijnen, S., The neural network zoo
[67] Vorozhtsov, E., On shock localization by digital image processing techniques, Comput. Fluids, 15, 1, 13-45 (1987) · Zbl 0612.76078
[68] Wang, Z. J.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H. T., High-order cfd methods: current status and perspective, Int. J. Numer. Methods Fluids, 72, 8, 811-845 (2013) · Zbl 1455.76007
[69] Werbos, P. J., Backpropagation through time: what it does and how to do it, Proc. IEEE, 78, 10, 1550-1560 (Oct 1990)
[70] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 1, 115-173 (1984) · Zbl 0573.76057
[71] Wu, Z.; Xu, Y.; Wang, W.; Hu, R., Review of shock wave detection method in CFD post-processing, Chin. J. Aeronaut., 26, 3, 501-513 (2013)
[72] Xie, S.; Tu, Z., Holistically-nested edge detection, (Proceedings of the IEEE International Conference on Computer Vision (2015)), 1395-1403
[73] Yang, M.; Wang, Z.-J., A parameter-free generalized moment limiter for high-order methods on unstructured grids, (47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2009)), 605
[74] Yu, J.; Hesthaven, J. S.; Yan, C., A data-driven shock capturing approach for discontinuous Galerkin methods (2018), Tech. Rep.
[75] Zhong, X.; Shu, C.-W., A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods, J. Comput. Phys., 232, 1, 397-415 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.