×

An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. II: Subcell finite volume shock capturing. (English) Zbl 07515469

Summary: The second paper of this series presents two robust entropy stable shock-capturing methods for discontinuous Galerkin spectral element (DGSEM) discretizations of the compressible magneto-hydrodynamics (MHD) equations. Specifically, we use the resistive GLM-MHD equations, which include a divergence cleaning mechanism that is based on a generalized Lagrange multiplier (GLM). For the continuous entropy analysis to hold, and due to the divergence-free constraint on the magnetic field, the GLM-MHD system requires the use of non-conservative terms, which need special treatment.
S. Hennemann et al. [J. Comput. Phys. 426, Article ID 109935, 31 p. (2021; Zbl 07510051)] recently presented an entropy stable shock-capturing strategy for DGSEM discretizations of the Euler equations that blends the DGSEM scheme with a subcell first-order finite volume (FV) method. Our first contribution is the extension of the method of Hennemann et al. to systems with non-conservative terms, such as the GLM-MHD equations. In our approach, the advective and non-conservative terms of the equations are discretized with a hybrid FV/DGSEM scheme, whereas the visco-resistive terms are discretized only with the high-order DGSEM method. We prove that the extended method is semi-discretely entropy stable on three-dimensional unstructured curvilinear meshes. Our second contribution is the derivation and analysis of a second entropy stable shock-capturing method that provides enhanced resolution by using a subcell reconstruction procedure that is carefully built to ensure entropy stability.
We provide a numerical verification of the properties of the hybrid FV/DGSEM schemes on curvilinear meshes and show their robustness and accuracy with common benchmark cases, such as the Orszag-Tang vortex and the GEM (Geospace Environmental Modeling) reconnection challenge. Finally, we simulate a space physics application: the interaction of Jupiter’s magnetic field with the plasma torus generated by the moon Io.
For Part I, see [M. Bohm et al., ibid. 422, Article ID 108076, 35 p. (2020; Zbl 07508372)].

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
35Lxx Hyperbolic equations and hyperbolic systems

Software:

HOPR; FLEXI; LAPACK; Pluto; Athena

References:

[1] Wang, Z. J.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H. T.; Kroll, N.; May, G.; Persson, P.-O.; van Leer, B.; Visbal, M.; van Leer, B.; Visbal, M., High-order CFD methods: current status and perspective, Int. J. Numer. Methods Fluids, 72, 811-845 (2013) · Zbl 1455.76007
[2] Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., The development of discontinuous Galerkin methods, Discontinuous Galerkin Methods, 11, 3-50 (2000) · Zbl 0989.76045
[3] Hindenlang, F.; Gassner, G. J.; Altmann, C.; Beck, A.; Staudenmaier, M.; Munz, C. D., Explicit discontinuous Galerkin methods for unsteady problems, Comput. Fluids, 61, 86-93 (2012) · Zbl 1365.76117
[4] Rivière, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations Theory and Implementation (2008), SIAM · Zbl 1153.65112
[5] Kopriva, D. A.; Woodruff, S. L.; Hussaini, M. Y., Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method, Int. J. Numer. Methods Eng., 53, 105-122 (2002) · Zbl 0994.78020
[6] Rueda-Ramírez, A. M.; Manzanero, J.; Ferrer, E.; Rubio, G.; Valero, E., A p-multigrid strategy with anisotropic p-adaptation based on truncation errors for high-order discontinuous Galerkin methods, J. Comput. Phys., 378, 209-233 (2019) · Zbl 1416.65357
[7] Rueda-Ramírez, A. M.; Rubio, G.; Ferrer, E.; Valero, E., Truncation error estimation in the p-anisotropic discontinuous Galerkin spectral element method, J. Sci. Comput., 78, 433-466 (2019) · Zbl 1410.65353
[8] Bohm, M.; Winters, A. R.; Gassner, G. J.; Derigs, D.; Hindenlang, F.; Saur, J., An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations. Part I: Theory and numerical verification, J. Comput. Phys., 1, 1-35 (2018)
[9] Winters, A. R.; Moura, R. C.; Mengaldo, G.; Gassner, G. J.; Walch, S.; Peiro, J.; Sherwin, S. J., A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations, J. Comput. Phys., 372, 1-21 (2018) · Zbl 1415.76461
[10] Fisher, T. C.; Carpenter, M. H.; Nordström, J.; Yamaleev, N. K.; Swanson, C., Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions, J. Comput. Phys., 234, 353-375 (2013) · Zbl 1284.65102
[11] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557 (2013) · Zbl 1349.65293
[12] Gassner, G. J., A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, A1233-A1253 (2013) · Zbl 1275.65065
[13] Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J.; Frankel, S. H., Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, B835-B867 (2014) · Zbl 1457.65140
[14] Derigs, D.; Winters, A. R.; Gassner, G. J.; Walch, S.; Bohm, M., Ideal GLM-MHD: about the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations, J. Comput. Phys., 364, 420-467 (2018) · Zbl 1392.76037
[15] Persson, P.-O.; Peraire, J., Sub-cell shock capturing for discontinuous Galerkin methods, (44th AIAA Aerospace Sciences Meeting and Exhibit (2006)), 1-13
[16] Klöckner, A.; Warburton, T.; Hesthaven, J. S., Viscous shock capturing in a time-explicit discontinuous Galerkin method, Math. Model. Nat. Phenom., 6, 57-83 (2011) · Zbl 1220.65165
[17] Fernandez, P.; Nguyen, N.-C.; Peraire, J., A Physics-Based Shock Capturing Method for Large-Eddy Simulation (2018)
[18] Ciucă, C.; Fernandez, P.; Christophe, A.; Nguyen, N. C.; Peraire, J., Implicit hybridized discontinuous Galerkin methods for compressible magnetohydrodynamics, J. Comput. Phys., X 5 (2020) · Zbl 07785522
[19] Sonntag, M.; Munz, C.-D., Shock capturing for discontinuous Galerkin methods using finite volume subcells, (Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems (2014)), 945-953 · Zbl 1426.76429
[20] Sonntag, M.; Munz, C. D., Efficient parallelization of a shock capturing for discontinuous Galerkin methods using finite volume sub-cells, J. Sci. Comput., 70, 1262-1289 (2017) · Zbl 1366.65089
[21] Sonntag, M., Shape derivatives and shock capturing for the Navier-Stokes equations in discontinuous Galerkin methods (2017), University of Stuttgart, Ph.D. thesis
[22] Núñez-de la Rosa, J.; Munz, C. D., Hybrid DG/FV schemes for magnetohydrodynamics and relativistic hydrodynamics, Comput. Phys. Commun., 222, 113-135 (2018) · Zbl 07693039
[23] Markert, J.; Gassner, G.; Walch, S., A sub-element adaptive shock capturing approach for discontinuous Galerkin methods (2020)
[24] Vilar, F., A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction, J. Comput. Phys., 387, 245-279 (2019) · Zbl 1452.65251
[25] Hennemann, S.; Rueda-Ramírez, A. M.; Hindenlang, F. J.; Gassner, G. J., A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations, J. Comput. Phys., Article 109935 pp. (2020)
[26] W. Pazner, Sparse Invariant Domain Preserving Discontinuous Galerkin Methods with Subcell Convex Limiting, arXiv, 2020. · Zbl 1506.65159
[27] Liu, Y.; Shu, C. W.; Zhang, M., Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes, J. Comput. Phys., 354, 163-178 (2018) · Zbl 1380.76162
[28] Rueda-Ramírez, A. M.; Gassner, G. J., A subcell finite volume positivity-preserving limiter for DGSEM discretizations of the Euler equations, (WCCM-ECCOMAS2020 (2021))
[29] Gassner, G. J.; Winters, A. R.; Hindenlang, F. J.; Kopriva, D. A., The BR1 Scheme is Stable for the Compressible Navier - Stokes Equations, Vol. 77 (2018), Springer US · Zbl 1407.65189
[30] Rueda-Ramírez, A. M.; Ferrer, E.; Kopriva, D. A.; Rubio, G.; Valero, E., A statically condensed discontinuous Galerkin spectral element method on Gauss-Lobatto nodes for the compressible Navier-Stokes equations, J. Comput. Phys. (2020)
[31] Ismail, F.; Roe, P. L., Affordable, entropy-consistent Euler flux functions II: entropy production at shocks, J. Comput. Phys., 228, 5410-5436 (2009) · Zbl 1280.76015
[32] Munz, C. D.; Omnes, P.; Schneider, R.; Sonnendrücker, E.; Voß, U., Divergence correction techniques for Maxwell solvers based on a hyperbolic model, J. Comput. Phys., 161, 484-511 (2000) · Zbl 0970.78010
[33] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C. D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645-673 (2002) · Zbl 1059.76040
[34] Powell, K. G.; Roe, P. L.; Linde, T. J.; Gombosi, T. I.; De Zeeuw, D. L., A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284-309 (1999) · Zbl 0952.76045
[35] Derigs, D.; Winters, A. R.; Gassner, G. J.; Walch, S., A novel averaging technique for discrete entropy-stable dissipation operators for ideal MHD, J. Comput. Phys., 330, 624-632 (2017) · Zbl 1378.76131
[36] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 267-279 (1997) · Zbl 0871.76040
[37] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 1749-1779 (2002) · Zbl 1008.65080
[38] Chandrashekar, P.; Klingenberg, C., Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes, SIAM J. Numer. Anal., 54, 1313-1340 (2016) · Zbl 1381.76213
[39] Tadmor, E., A minimum entropy principle in the gas dynamics equations, Appl. Numer. Math., 2, 211-219 (1986) · Zbl 0625.76084
[40] Tadmor, E., Entropy functions for symmetric systems of conservation laws, J. Math. Anal. Appl., 122, 355-359 (1987) · Zbl 0624.35057
[41] Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., 12, 451-512 (2003) · Zbl 1046.65078
[42] Renac, F., Entropy stable DGSEM for nonlinear hyperbolic systems in nonconservative form with application to two-phase flows, J. Comput. Phys., 382, 1-26 (2019) · Zbl 1451.76073
[43] Manzanero, J., A high-order discontinuous Galerkin multiphase flow solver for industrial applications (2020), Universidad Politécnica de Madrid, Ph.D. thesis
[44] Winters, A. R.; Gassner, G. J., Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J. Comput. Phys., 304, 72-108 (2016) · Zbl 1349.76407
[45] Barth, T. J., Numerical methods for gasdynamic systems on unstructured meshes, (An Introduction to Recent Developments in Theory and Numerics for Conservation Laws (1999), Springer), 195-285 · Zbl 0969.76040
[46] Winters, A. R.; Derigs, D.; Gassner, G. J.; Walch, S., A uniquely defined entropy stable matrix dissipation operator for high Mach number ideal MHD and compressible Euler simulations, J. Comput. Phys., 332, 274-289 (2017) · Zbl 1378.76144
[47] Roe, P. L.; Balsara, D. S., Notes on the eigensystem of magnetohydrodynamics, SIAM J. Appl. Math., 56, 57-67 (1996) · Zbl 0845.35092
[48] van Leer, B., Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme, J. Comput. Phys., 14, 361-370 (1974) · Zbl 0276.65055
[49] Coquel, F.; LeFloch, P. G., An entropy satisfying MUSCL scheme for systems of conservation laws, Numer. Math., 74, 1-33 (1996) · Zbl 0860.65076
[50] Coquel, F.; Helluy, P.; Schneider, J., Second-order entropy diminishing scheme for the Euler equations, Int. J. Numer. Methods Fluids, 50, 1029-1061 (2006) · Zbl 1138.76416
[51] Fjordholm, U. S.; Mishra, S.; Tadmor, E., Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws, SIAM J. Numer. Anal., 50, 544-573 (2012) · Zbl 1252.65150
[52] Biswas, B.; Dubey, R. K., Low dissipative entropy stable schemes using third order WENO and TVD reconstructions, Adv. Comput. Math., 44, 1153-1181 (2018) · Zbl 1396.65139
[53] Spiteri, R. J.; Ruuth, S. J., A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer. Anal., 40, 469-491 (2002) · Zbl 1020.65064
[54] Ranocha, H.; Dalcin, L.; Parsani, M., Fully discrete explicit locally entropy-stable schemes for the compressible Euler and Navier-Stokes equations, Comput. Math. Appl., 80, 1343-1359 (2020) · Zbl 1524.65677
[55] Krais, N.; Beck, A.; Bolemann, T.; Frank, H.; Flad, D.; Gassner, G.; Hindenlang, F.; Hoffmann, M.; Kuhn, T.; Sonntag, M.; Munz, C. D., FLEXI: a high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws, Comput. Math. Appl., 81, 186-219 (2021) · Zbl 1461.76347
[56] Chan, J.; Fernandez, D. C.D. R.; Carpenter, M. H.; Del Rey Fernández, D. C.; Carpenter, M. H., Efficient entropy stable Gauss collocation methods, SIAM J. Sci. Comput., 41, A2938-A2966 (2019) · Zbl 1435.65172
[57] Hindenlang, F.; Bolemann, T.; Munz, C.-D., Mesh Curving Techniques for High Order Discontinuous Galerkin Simulations (2015), University of Stuttgart, Ph.D. thesis
[58] Orszag, S. A.; Tang, C.-M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 90, 129-143 (1979)
[59] Stone, J. M.; Gardiner, T. A.; Teuben, P.; Hawley, J. F.; Simon, J. B., Athena: a new code for astrophysical MHD, Astrophys. J. Suppl. Ser., 178, 137-177 (2008)
[60] Birn, J.; Drake, J. F.; Shay, M. A.; Rogers, B. N.; Denton, R. E.; Hesse, M.; Kuznetsova, M.; Ma, Z. W.; Bhattacharjee, A.; Otto, A.; Pritchett, P. L., Geospace environmental modeling (GEM) magnetic reconnection challenge, J. Geophys. Res. Space Phys., 106, 3715-3719 (2001)
[61] Helander, P.; Eriksson, L. G.; Andersson, F., Runaway acceleration during magnetic reconnection in tokamaks, Plasma Phys. Control. Fusion, 44 (2002)
[62] Ono, Y.; Tanabe, H.; Yamada, T.; Inomoto, M.; Ii, T.; Inoue, S.; Gi, K.; Watanabe, T.; Gryaznevich, M.; Scannell, R.; Michael, C.; Cheng, C. Z., Ion and electron heating characteristics of magnetic reconnection in tokamak plasma merging experiments, Plasma Phys. Control. Fusion, 54 (2012)
[63] Mignone, A.; Zanni, C.; Tzeferacos, P.; Van Straalen, B.; Colella, P.; Bodo, G., The PLUTO code for adaptive mesh computations in astrophysical fluid dynamics, Astrophys. J. Suppl. Ser., 198 (2012)
[64] Sousa, É. M.; Lin, G.; Shumlak, U., Uncertainty quantification of the gem challenge magnetic reconnection problem using the multilevel Monte Carlo method, Int. J. Uncertain. Quantificat., 5, 327-339 (2015) · Zbl 1498.82032
[65] Otto, A., Geospace Environment Modeling (GEM) magnetic reconnection challenge: MHD and Hall MHD-constant and current dependent resistivity models, J. Geophys. Res. Space Phys., 106, 3751-3757 (2001)
[66] Kivelson, M. G.; Bagenal, F.; Kurth, W. S.; Neubauer, F. M.; Paranicas, C.; Saur, J., Magnetospheric interactions with satellites, (Jupiter: the Planet M (2003)), 1-24
[67] Saur, J.; Neubauer, F. M.; Connerney, J. E.P., Plasma Interaction of Io with its Plasma Torus (2004)
[68] Kivelson, M.; Khurana, K.; Russell, C.; Walker, R.; Joy, S.; Mafi, J., Galileo Orbiter at Jupiter Calibrated Mag High Res V1.0, GO-J-MAG-3-RDR-HIGHRES-V1.0 (1997), NASA Planetary Data System, Technical Report
[69] Jacobsen, S.; Neubauer, F. M.; Saur, J.; Schilling, N., Io’s nonlinear MHD-wave field in the heterogeneous Jovian magnetosphere, Geophys. Res. Lett., 34, 1-5 (2007)
[70] Blöcker, A., Modeling Io’s and Europa’s Plasma Interaction with the Jovian Magnetosphere: Influence of Global Atmospheric Asymmetries and Plumes (2017), Universität zu Köln, Ph.D. thesis
[71] Blöcker, A.; Saur, J.; Roth, L.; Strobel, D. F., MHD modeling of the plasma interaction with Io’s asymmetric atmosphere, J. Geophys. Res. Space Phys., 123, 9286-9311 (2018)
[72] Bohm, M., An entropy stable nodal discontinuous Galerkin method for the resistive MHD equations (2019), University of Cologne, Ph.D. thesis
[73] Duling, S.; Saur, J.; Wicht, J., Consistent boundary conditions at nonconducting surfaces of planetary bodies: applications in a new Ganymede MHD model, J. Geophys. Res. Space Phys., 119, 4412-4440 (2014)
[74] Blöcker, A.; Saur, J.; Roth, L., Europa’s plasma interaction with an inhomogeneous atmosphere: development of Alfvén winglets within the Alfvén wings, J. Geophys. Res. Space Phys., 121, 9794-9828 (2016)
[75] Kopriva, D. A., Metric identities and the discontinuous spectral element method on curvilinear meshes, J. Sci. Comput., 26, 301-327 (2006) · Zbl 1178.76269
[76] Pazner, W.; Persson, P. O., Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods, J. Comput. Phys., 354, 344-369 (2018) · Zbl 1380.65067
[77] Birken, P.; Gassner, G.; Haas, M.; Munz, C. D., Preconditioning for modal discontinuous Galerkin methods for unsteady 3D Navier-Stokes equations, J. Comput. Phys., 240, 20-35 (2013) · Zbl 1426.76520
[78] Botti, L.; Colombo, A.; Bassi, F., h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems, J. Comput. Phys., 347, 382-415 (2017) · Zbl 1380.65251
[79] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D., LAPACK Users’ Guide (1999), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 0934.65030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.