×

Many-stage optimal stabilized Runge-Kutta methods for hyperbolic partial differential equations. (English) Zbl 1535.65163

Explicit Runge-Kutta (RK) methods are commonly considered for the integration of hyperbolic partial differential equations (PDEs). Stable timestep needs to be significantly reduced due to the CFL condition. To increase computational efficiency, stabilized explicit RK methods have been introduced. Stabilized explicit RK methods use additional stages to improve the stability properties of the scheme, allowing larger timesteps. In this paper, an optimization approach is devised for the generation of optimal stability polynomials for spectra of hyperbolic PDEs. The optimization approach relies on the properties of the pseudo-extrema for the proven optimal stability polynomials of first and second order for disks. Optimal stability polynomials for both convex and nonconvex spectra are presented. Stability polynomials with degrees larger than 100 are constructed for a range of classical hyperbolic PDEs that match the linear consistency requirements up to order three. Numerical schemes are constructed by minimizing the propagation and amplification of round-off errors, which is challenging for many-stage methods. For linear problems, only internal stability might limit the theoretically possible maximum timestep while for nonlinear problems the lack of the strong stability preserving (SSP) property spoils the effectiveness of the very high-stage methods.

MSC:

65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
65K10 Numerical optimization and variational techniques
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
49M41 PDE constrained optimization (numerical aspects)
41A50 Best approximation, Chebyshev systems

References:

[1] Courant, R.; Friedrichs, K.; Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen, 100, 32-74, 1928 · JFM 54.0486.01 · doi:10.1007/BF01448839
[2] Franklin, J., Numerical stability in digital and analog computation for diffusion problems, J. Math. Phys., 37, 305-315, 1958 · Zbl 0090.10003 · doi:10.1002/sapm1958371305
[3] Guillou, A., Lago, B.: Domaine de stabilité associé aux formules d’intégration numérique d’équations différentielles, a pas séparés et a pas liés. recherche de formules a grand rayon de stabilité, Ier Congr. Ass. Fran. Calcul., AFCAL, pp. 43-56 (1960) · Zbl 0109.09303
[4] Saul’ev, V., Integration of parabolic equations by the grid method, Fizmatgiz Moscow, 13, 14-19, 1960
[5] Forsythe, GE; Wasow, WR, Finite-Difference Methods for Partial Differential Equations, 1960, New York: Wiley, New York · Zbl 0099.11103
[6] Wanner, G.; Hairer, E., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 1996, Berlin: Springer, Berlin · Zbl 1192.65097 · doi:10.1007/978-3-642-05221-7
[7] Hundsdorfer, WH; Verwer, JG, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, 2010, Berlin: Springer, Berlin
[8] Verwer, JG, Explicit Runge-Kutta methods for parabolic partial differential equations, Appl. Numer. Math., 22, 359-379, 1996 · Zbl 0868.65064 · doi:10.1016/S0168-9274(96)00022-0
[9] Abdulle, A.: Explicit stabilized Runge-Kutta methods, Technical Report. Mathematics Institute of Computational Science and Engineering, School of Basic Sciences, Section of Mathematics EPFL Lausanne (2011)
[10] Van der Houwen, P., The development of Runge-Kutta methods for partial differential equations, Appl. Numer. Math., 20, 261-272, 1996 · Zbl 0857.65094 · doi:10.1016/0168-9274(95)00109-3
[11] Chzao-Din, Y.: Some difference schemes for the solution of the first boundary value problem for linear differential equations with partial derivatives. Moscow Stage University, Thesis (1958)
[12] Burrage, K., Order and stability properties of explicit multivalue methods, Appl. Numer. Math., 1, 363-379, 1985 · Zbl 0619.65058 · doi:10.1016/0168-9274(85)90001-7
[13] Lomax, H., On the Construction of Highly Stable, Explicit, Numerical Methods for Integrating Coupled Ordinary Differential Equations with Parasitic Eigenvalues, 1968, National Aeronautics and Space Administration
[14] Lebedev, V.: A new method for determining the roots of polynomials of least deviation on a segment with weight and subject to additional conditions. Part I. Russ. J. Numer. Anal. Math. Model. 8, 195-222 (1993a). doi:10.1515/rnam.1993.8.3.195 · Zbl 0818.65035
[15] Lebedev, V.: A new method for determining the roots of polynomials of least deviation on a segment with weight and subject to additional conditions. Part II, Russ. J. Numer. Anal. Math. Model. 8, 397-426 (1993b). doi:10.1515/rnam.1993.8.5.397 · Zbl 0818.65036
[16] Van der Houwen, P.J.: Construction of integration formulas for initial value problems. Technical Report, Stichting Mathematisch Centrum, Amsterdam (1977) · Zbl 0359.65057
[17] Van der Houwen, P.; Kok, J., Numerical Solution of a Minimax Problem, 1971, Toegepaste Wiskunde: Stichting Mathematisch Centrum, Toegepaste Wiskunde · Zbl 0276.65035
[18] Abdulle, A.; Medovikov, AA, Second order Chebyshev methods based on orthogonal polynomials, Numer. Math., 90, 1-18, 2001 · Zbl 0997.65094 · doi:10.1007/s002110100292
[19] Riha, W., Optimal stability polynomials, Computing, 9, 37-43, 1972 · Zbl 0234.65076 · doi:10.1007/BF02236374
[20] Van der Houwen, P., Explicit Runge-Kutta formulas with increased stability boundaries, Numer. Math., 20, 149-164, 1972 · Zbl 0233.65039 · doi:10.1007/BF01404404
[21] Kinnmark, IP; Gray, WG, One step integration methods with maximum stability regions, Math. Comput. Simul., 26, 87-92, 1984 · Zbl 0539.65050 · doi:10.1016/0378-4754(84)90039-9
[22] Sonneveld, P., Van Leer, B.: A minimax problem along the imaginary axis, Technical Report 4. Technische Hogeschool Delft, Onderafdeling der Wiskunde en Informatica (1984) · Zbl 0571.65062
[23] Kinnmark, IP; Gray, WG, One step integration methods of third-fourth order accuracy with large hyperbolic stability limits, Math. Comput. Simul., 26, 181-188, 1984 · Zbl 0539.65051 · doi:10.1016/0378-4754(84)90056-9
[24] Jeltsch, R.; Nevanlinna, O., Largest disk of stability of explicit Runge-Kutta methods, BIT Numer. Math., 18, 500-502, 1978 · Zbl 0399.65051 · doi:10.1007/BF01932030
[25] Owren, B.; Seip, K., Some stability results for explicit Runge-Kutta methods, BIT Numer. Math., 30, 700-706, 1990 · Zbl 0718.65061 · doi:10.1007/BF01933217
[26] Vichnevetsky, R., New stability theorems concerning one-step numerical methods for ordinary differential equations, Math. Comput. Simul., 25, 199-205, 1983 · Zbl 0573.65052 · doi:10.1016/0378-4754(83)90092-7
[27] Niegemann, J.; Diehl, R.; Busch, K., Efficient low-storage Runge-Kutta schemes with optimized stability regions, J. Comput. Phys., 231, 364-372, 2012 · Zbl 1243.65113 · doi:10.1016/j.jcp.2011.09.003
[28] Torrilhon, M.; Jeltsch, R., Essentially optimal explicit Runge-Kutta methods with application to hyperbolic-parabolic equations, Numer. Math., 106, 303-334, 2007 · Zbl 1113.65074 · doi:10.1007/s00211-006-0059-5
[29] Kennedy, CA; Carpenter, MH; Lewis, R., Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations, Appl. Numer. Math., 35, 177-219, 2000 · Zbl 0986.76060 · doi:10.1016/S0168-9274(99)00141-5
[30] Allampalli, V.; Hixon, R.; Nallasamy, M.; Sawyer, SD, High-accuracy large-step explicit Runge-Kutta (HALE-RK) schemes for computational aeroacoustics, J. Comput. Phys., 228, 3837-3850, 2009 · Zbl 1171.76039 · doi:10.1016/j.jcp.2009.02.015
[31] Toulorge, T.; Desmet, W., Optimal Runge-Kutta schemes for discontinuous Galerkin space discretizations applied to wave propagation problems, J. Comput. Phys., 231, 2067-2091, 2012 · Zbl 1242.65190 · doi:10.1016/j.jcp.2011.11.024
[32] Mead, J.; Renaut, R., Optimal Runge-Kutta methods for first order pseudospectral operators, J. Comput. Phys., 152, 404-419, 1999 · Zbl 0935.65100 · doi:10.1006/jcph.1999.6260
[33] Al Jahdali, R., Boukharfane, R, Dalcin, L., Parsani, M.: Optimized explicit Runge-Kutta schemes for entropy stable discontinuous collocated methods applied to the Euler and Navier-Stokes equations. In: AIAA Scitech 2021 Forum, 2021, p. 0633. doi:10.2514/6.2021-0633 · Zbl 1524.65264
[34] Kubatko, EJ; Yeager, BA; Ketcheson, DI, Optimal strong-stability-preserving Runge-Kutta time discretizations for discontinuous Galerkin methods, J. Sci. Comput., 60, 313-344, 2014 · Zbl 1304.65219 · doi:10.1007/s10915-013-9796-7
[35] Nasab, S.H., Cagnone, J.-S., Vermeire, B.C.: Optimal explicit Runge-Kutta time stepping for density-based finite-volume solver. In: AIAA SCITECH 2022 Forum, 2022, p. 1049. doi:10.2514/6.2022-1049 · Zbl 1521.65064
[36] Ketcheson, D.; Ahmadia, A., Optimal stability polynomials for numerical integration of initial value problems, Commun. Appl. Math. Comput. Sci., 7, 247-271, 2013 · Zbl 1259.65114 · doi:10.2140/camcos.2012.7.247
[37] Vermeire, B.; Loppi, N.; Vincent, P., Optimal Runge-Kutta schemes for pseudo time-stepping with high-order unstructured methods, J. Comput. Phys., 383, 55-71, 2019 · Zbl 1451.65112 · doi:10.1016/j.jcp.2019.01.003
[38] Schlottke-Lakemper, M.; Winters, AR; Ranocha, H.; Gassner, GJ, A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics, J. Comput. Phys., 442, 2021 · Zbl 07513798 · doi:10.1016/j.jcp.2021.110467
[39] Vermeire, BC, Paired explicit Runge-Kutta schemes for stiff systems of equations, J. Comput. Phys., 393, 465-483, 2019 · Zbl 1452.65128 · doi:10.1016/j.jcp.2019.05.014
[40] Hedayati Nasab, S.; Vermeire, BC, Third-order paired explicit Runge-Kutta schemes for stiff systems of equations, J. Comput. Phys., 468, 111470, 2022 · Zbl 07578894 · doi:10.1016/j.jcp.2022.111470
[41] Vermeire, BC; Hedayati Nasab, S., Accelerated implicit-explicit Runge-Kutta schemes for locally stiff systems, J. Comput. Phys., 429, 110022, 2021 · Zbl 07500754 · doi:10.1016/j.jcp.2020.110022
[42] Hedayati Nasab, S.; Pereira, CA; Vermeire, BC, Optimal Runge-Kutta stability polynomials for multidimensional high-order methods, J. Sci. Comput., 89, 11, 2021 · Zbl 1500.65061 · doi:10.1007/s10915-021-01620-x
[43] Klinge, M.; Weiner, R., Strong stability preserving explicit peer methods for discontinuous Galerkin discretizations, J. Sci. Comput., 75, 1057-1078, 2018 · Zbl 1398.65162 · doi:10.1007/s10915-017-0573-x
[44] Ellison, AC; Fornberg, B., A parallel-in-time approach for wave-type PDEs, Numer. Math., 148, 79-98, 2021 · Zbl 1477.65150 · doi:10.1007/s00211-021-01197-5
[45] Vermeire, BC, Embedded paired explicit Runge-Kutta schemes, J. Comput. Phys., 487, 112159, 2023 · Zbl 07690230 · doi:10.1016/j.jcp.2023.112159
[46] Hairer, E.; Wanner, G.; Nørsett, SP, Solving Ordinary Differential Equations I: Nonstiff Problems, 1993, Berlin: Springer, Berlin · Zbl 0789.65048 · doi:10.1007/978-3-540-78862-1
[47] Hundsdorfer, W.; Mozartova, A.; Savcenco, VM, Vonotonicity Conditions for Multirate and Partitioned Explicit Runge-Kutta Schemes, 177-195, 2013, Berlin: Springer, Berlin · Zbl 1263.65089 · doi:10.1007/978-3-642-33221-0_11
[48] Hu, F.; Hussaini, MY; Manthey, J., Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics, J. Comput. Phys., 124, 177-191, 1996 · Zbl 0849.76046 · doi:10.1006/jcph.1996.0052
[49] Berland, J.; Bogey, C.; Bailly, C., Low-dissipation and low-dispersion fourth-order Runge-Kutta algorithm, Comput. Fluids, 35, 1459-1463, 2006 · Zbl 1177.76252 · doi:10.1016/j.compfluid.2005.04.003
[50] Bernardini, M.; Pirozzoli, S., A general strategy for the optimization of Runge-Kutta schemes for wave propagation phenomena, J. Comput. Phys., 228, 4182-4199, 2009 · Zbl 1273.76294 · doi:10.1016/j.jcp.2009.02.032
[51] Spiteri, RJ; Ruuth, SJ, A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer. Anal., 40, 469-491, 2002 · Zbl 1020.65064 · doi:10.1137/S0036142901389025
[52] Ruuth, S., Global optimization of explicit strong-stability-preserving Runge-Kutta methods, Math. Comput., 75, 183-207, 2006 · Zbl 1080.65088 · doi:10.1090/S0025-5718-05-01772-2
[53] Sturm, JF, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optim. Methods Softw., 11, 625-653, 1999 · Zbl 0973.90526 · doi:10.1080/10556789908805766
[54] Domahidi, A., Chu, E., Boyd, S.: ECOS: an SOCP solver for embedded systems. In: 2013 European Control Conference (ECC), pp. 3071-3076. doi:10.23919/ECC.2013.6669541
[55] Trefethen, LN, Approximation Theory and Approximation Practice, Other Titles in Applied Mathematics, 2019, London: SIAM, London · doi:10.1137/1.9781611975949
[56] Verwer, JG; Hundsdorfer, WH; Sommeijer, BP, Convergence properties of the Runge-Kutta-Chebyshev method, Numer. Math., 57, 157-178, 1990 · Zbl 0697.65072 · doi:10.1007/BF01386405
[57] van Der Houwen, PJ; Sommeijer, BP, On the internal stability of explicit, m-stage Runge-Kutta methods for large m-values, ZAMM J. Appl. Math. Mech., 60, 479-485, 1980 · Zbl 0455.65052 · doi:10.1002/zamm.19800601005
[58] Verwer, JG; Sommeijer, BP; Hundsdorfer, W., RKC time-stepping for advection-diffusion-reaction problems, J. Comput. Phys., 201, 61-79, 2004 · Zbl 1059.65085 · doi:10.1016/j.jcp.2004.05.002
[59] Shu, C-W; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-471, 1988 · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[60] Gottlieb, S.; Shu, C-W; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 89-112, 2001 · Zbl 0967.65098 · doi:10.1137/S003614450036757X
[61] Gottlieb, S.; Ketcheson, D.; Shu, C-W, Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations, 2011, Singapore: World Scientific, Singapore · Zbl 1241.65064 · doi:10.1142/7498
[62] Godunov, SK; Bohachevsky, I., Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics, Matematičeskij sbornik, 47, 89, 271-306, 1959 · Zbl 0171.46204
[63] Kopriva, DA; Gassner, G., On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods, J. Sci. Comput., 44, 136-155, 2010 · Zbl 1203.65199 · doi:10.1007/s10915-010-9372-3
[64] Kopriva, DA, Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers, Scientific Computation (SCIENTCOMP), 2009, Berlin: Springer, Berlin · Zbl 1172.65001 · doi:10.1007/978-90-481-2261-5
[65] Ranocha, H.; Schlottke-Lakemper, M.; Winters, AR; Faulhaber, E.; Chan, J.; Gassner, G., Adaptive numerical simulations with Trixijl: a case study of Julia for scientific computing, Proc. JuliaCon. Conf., 1, 77, 2022 · doi:10.21105/jcon.00077
[66] Schlottke-Lakemper, M.; Winters, AR; Ranocha, H.; Gassner, G., A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics, J. Comput. Phys., 442, 2021 · Zbl 07513798 · doi:10.1016/j.jcp.2021.110467
[67] Schlottke-Lakemper, M., Gassner, G., Ranocha, H., Winters, A.R., Chan, J.: Trixi.jl: adaptive high-order numerical simulations of hyperbolic PDEs in Julia (2021b). https://github.com/trixi-framework/Trixi.jl. doi:10.5281/zenodo.3996439
[68] Kinnmark, IP, A principle for construction of one-step integration methods with maximum imaginary stability limits, Math. Comput. Simul., 29, 87-106, 1987 · Zbl 0637.65064 · doi:10.1016/0378-4754(87)90100-5
[69] De Marchi, S.; Marchetti, F.; Perracchione, E.; Poggiali, D., Polynomial interpolation via mapped bases without resampling, J. Comput. Appl. Math., 364, 112347, 2020 · Zbl 1439.65010 · doi:10.1016/j.cam.2019.112347
[70] Wächter, A.; Biegler, LT, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106, 25-57, 2006 · Zbl 1134.90542 · doi:10.1007/s10107-004-0559-y
[71] Amestoy, P.; Duff, IS; Koster, J.; L’Excellent, J-Y, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 15-41, 2001 · Zbl 0992.65018 · doi:10.1137/S0895479899358194
[72] Amestoy, P.; Buttari, A.; L’Excellent, J-Y; Mary, T., Performance and scalability of the block low-rank multifrontal factorization on multicore architectures, ACM Trans. Math. Softw., 45, 2:1-2:26, 2019 · Zbl 1471.65025 · doi:10.1145/3242094
[73] Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 359-392, 1998 · Zbl 0915.68129 · doi:10.1137/S1064827595287997
[74] Naumann, U., Leppkes, K., Lotz, J.: dco/C++ user guide. Technical Report, RWTH Aachen, Department of Computer Science (2014)
[75] Doehring, D., Vigerske, S.: Tell ipopt it is a feasibility problem #597, GitHub issue (2022). https://github.com/coin-or/Ipopt/issues/597
[76] Liu, DC; Nocedal, J., On the limited memory BFGS method for large scale optimization, Math. Program., 45, 503-528, 1989 · Zbl 0696.90048 · doi:10.1007/BF01589116
[77] Doehring, D.: OSPREI: optimal stability polynomials in roots for explicit time integration (2023). https://github.com/DanielDoehring/OSPREI, doi:10.5281/zenodo.8009493
[78] Edelsbrunner, H.; Kirkpatrick, D.; Seidel, R., On the shape of a set of points in the plane, IEEE Trans. Inf. Theory, 29, 551-559, 1983 · Zbl 0512.52001 · doi:10.1109/TIT.1983.1056714
[79] Edelsbrunner, H.: Alpha shapes—a survey, Technical Report 1, IST Austria (Institute of Science and Technology Austria) (2011)
[80] Wang, ZJ; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, HT, High-order CFD methods: current status and perspective, Int. J. Numer. Methods Fluids, 72, 811-845, 2013 · Zbl 1455.76007 · doi:10.1002/fld.3767
[81] George, J.D. , Jung, S.Y., Mangan, N.M.: Walking into the complex plane to ‘order’ better time integrators (2021). arXiv preprint arXiv:2110.04402. doi:10.48550/arXiv.2110.04402
[82] Ketcheson, DI; Loczi, L.; Parsani, M., Internal error propagation in explicit Runge-Kutta methods, J. Numer. Anal., 52, 2227-2249, 2014 · Zbl 1309.65091 · doi:10.1137/130936245
[83] O’Sullivan, S., Factorized Runge-Kutta-Chebyshev methods, J. Phys. Conf. Ser., 837, 012020, 2017 · doi:10.1088/1742-6596/837/1/012020
[84] Ferracina, L.; Spijker, M., An extension and analysis of the Shu-Osher representation of Runge-Kutta methods, Math. Comput., 74, 201-219, 2005 · Zbl 1058.65098 · doi:10.1090/S0025-5718-04-01664-3
[85] Lebedev, V., Explicit difference schemes with time-variable steps for solving stiff systems of equations, Soviet J. Numer. Anal. Math. Modell., 4, 111-135, 1989 · Zbl 0825.65067 · doi:10.1515/rnam.1989.4.2.111
[86] Lebedev, V., How to Solve Stiff Systems of Differential Equations by Explicit Methods, 1994, Boca Raton: CRC Press, Boca Raton · Zbl 0851.65052
[87] Salari, K., Knupp, P.: Code verification by the method of manufactured solutions, Technical Report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) (2000). doi:10.2172/759450
[88] Roache, PJ, Code verification by the method of manufactured solutions, J. Fluids Eng., 124, 4-10, 2002 · doi:10.1115/1.1436090
[89] Harten, A.; Lax, PD; Leer, BV, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 35-61, 1983 · Zbl 0565.65051 · doi:10.1137/1025002
[90] Osher, S., Riemann solvers, the entropy condition, and difference, SIAM J. Numer. Anal., 21, 217-235, 1984 · Zbl 0592.65069 · doi:10.1137/0721016
[91] Ketcheson, DI, Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations, SIAM J. Sci. Comput., 30, 2113-2136, 2008 · Zbl 1168.65382 · doi:10.1137/07070485X
[92] Shu, CW; Quarteroni, A., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, 325-432, 1998, Berlin: Springer, Berlin · Zbl 0904.00047 · doi:10.1007/BFb0096351
[93] Toro, EF; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, 25-34, 1994 · Zbl 0811.76053 · doi:10.1007/BF01414629
[94] LeFloch, PG; Mercier, JM; Rohde, C., Fully discrete, entropy conservative schemes of arbitraryorder, SIAM J. Numer. Anal., 40, 1968-1992, 2002 · Zbl 1033.65073 · doi:10.1137/S003614290240069X
[95] Chen, T.; Shu, C-W, Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys., 345, 427-461, 2017 · Zbl 1380.65253 · doi:10.1016/j.jcp.2017.05.025
[96] Fjordholm, US; Mishra, S.; Tadmor, E., Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, J. Comput. Phys., 230, 5587-5609, 2011 · Zbl 1452.35149 · doi:10.1016/j.jcp.2011.03.042
[97] Wintermeyer, N.; Winters, AR; Gassner, GJ; Kopriva, DA, An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry, J. Comput. Phys., 340, 200-242, 2017 · Zbl 1380.65291 · doi:10.1016/j.jcp.2017.03.036
[98] Rusanov, V., The calculation of the interaction of non-stationary shock waves and obstacles, USSR Comput. Math. Math. Phys., 1, 304-320, 1962 · doi:10.1016/0041-5553(62)90062-9
[99] Tóth, G., The div(b)=0 constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys., 161, 605-652, 2000 · Zbl 0980.76051 · doi:10.1006/jcph.2000.6519
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.