×

Finite-amplitude acoustics under the classical theory of particle-laden flows. (English) Zbl 1425.74249

Summary: We consider acoustic propagation in a particle-laden fluid, specifically, a perfect gas, under a model system based on the theories of F. E. Marble [“Dynamics of dusty gases”, Ann. Rev. Fluid Mech. 2, 397–446 (1970; doi:10.1146/annurev.fl.02.010170.002145)] and P. A. Thompson [Compressible-fluid dynamics. New York etc.: McGraw-Hill Book Company (1972; Zbl 0251.76001)]. Our primary aim is to understand, via analytical methods, the impact of the particle phase on the acoustic velocity field. Working under the finite-amplitude approximation, we investigate singular surface and traveling wave phenomena, as admitted by both phases of the flow. We show, among other things, that the particle velocity field admits a singular surface one order higher than that of the gas phase, that the particle-to-gas density ratio plays a number of critical roles, and that traveling wave solutions are only possible for sufficiently small values of the Mach number.

MSC:

74J30 Nonlinear waves in solid mechanics
76N15 Gas dynamics (general theory)
80A20 Heat and mass transfer, heat flow (MSC2010)
35M30 Mixed-type systems of PDEs

Citations:

Zbl 0251.76001
Full Text: DOI

References:

[1] M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, Dover, 1966.
[2] J. Angulo, Nonlinear Dispersive Equations: Existence and Stability of Solitary and Periodic Travelling Wave Solutions, Mathematical Surveys and Monographs, vol. 156, American Mathematical Society, 2009. · Zbl 1202.35246
[3] S. Bargmann; P. Steinmann; P. M. Jordan, On the propagation of second-sound in linear and nonlinear media: Results from Green-Naghdi theory, Phys. Lett. A, 372, 4418-4424 (2008) · Zbl 1221.80004 · doi:10.1016/j.physleta.2008.04.010
[4] R. T. Beyer, The parameter B/A, in: Nonlinear Acoustics (eds. M. F. Hamilton and D. T. Blackstock), Academic Press, 1998, 25-39.
[5] J. Bissell and B. Straughan, Discontinuity waves as tipping points: Applications to biological & sociological systems, Discrete Cont. Dyn. Sys., Ser. B (DCDS-B), 19 (2014), 1911-1934. · Zbl 1304.35413
[6] D. R. Bland, Wave Theory and Applications, Oxford University Press, 1988. · Zbl 0648.73015
[7] B. A. Boley and R. B. Hetnarski, Propagation of discontinuities in coupled thermoelastic problems, J. Appl. Mech. (ASME), 35 (1968), 489-494. · Zbl 0159.56503
[8] J. P. Boyd, A proof, based on the Euler sum acceleration, of the recovery of an exponential (geometric) rate of convergence for the Fourier series of a function with Gibbs phenomenon, Spectral and High Order Methods for Partial Differential Equations, 131-139, Lect. Notes Comput. Sci. Eng., 76, Springer, Heidelberg, 2011, (https://arXiv.org/abs/1003.5263v1). · Zbl 1217.65037
[9] J. P. Boyd, Dynamics of the Equatorial Ocean, Springer-Verlag, \(2018, \begin{document}\S\S\end{document}\) A.13, A.14.
[10] J. P. Boyd, Private communication, 24 February 2018.
[11] H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics, Dover, 1963. · Zbl 0111.17102
[12] I. Christov and P. M. Jordan, Shock bifurcation and emergence of diffusive solitons in a nonlinear wave equation with relaxation, New J. Phys., 10 (2008), 043027.
[13] M. Ciarletta; B. Straughan, Poroacoustic acceleration waves, Proc. R. Soc. A, 462, 3493-3499 (2006) · Zbl 1149.74345 · doi:10.1098/rspa.2006.1730
[14] D. G. Crighton, Model equations of nonlinear acoustics, Ann. Rev. Fluid Mech., 11, 11-33 (1979) · Zbl 0443.76074
[15] D. G. Crighton, Nonlinear waves in aerosols and dusty gases, in: Nonlinear Waves in Real Fluids (ed. A. Kluwick), Springer-Verlag, 1991, 69-82. · Zbl 0723.76101
[16] D. G. Crighton, Propagation of finite-amplitude waves in fluids, in: Handbook of Acoustics (ed. M. J. Crocker), Wiley, 1998, Chap. 17.
[17] D. G. Crighton; J. T. Scott, Asymptotic solutions of model equations in nonlinear acoustics, Phil. Trans. R. Soc. London A, 292, 101-134 (1979) · Zbl 0412.76054 · doi:10.1098/rsta.1979.0046
[18] J. Guillera and J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent, Ramanujan J.,16 (2008), 247-270, (http://arXiv.org/abs/math.NT/0506319v3). · Zbl 1216.11075
[19] P. M. Jordan, Second-sound phenomena in inviscid, thermally relaxing gases, Discrete Cont. Dyn. Sys., Ser. B (DCDS-B), 19 (2014), 2189-2205. · Zbl 1302.76095
[20] P. M. Jordan, A survey of weakly-nonlinear acoustic models: 1910-2009, Mech. Res. Commun., 73, 127-139 (2016)
[21] P. M. Jordan; R. S. Keiffer; G. Saccomandi, Anomalous propagation of acoustic traveling waves in thermoviscous fluids under the Rubin-Rosenau-Gottlieb theory of dispersive media, Wave Motion, 51, 382-388 (2014) · Zbl 1456.76116 · doi:10.1016/j.wavemoti.2013.08.009
[22] B. Kaltenbacher, Mathematics of nonlinear acoustics, Evol. Eq. Control Theory (EECT), 4 (2015), 447-491. · Zbl 1339.35003
[23] B. Kaltenbacher, I. Lasiecka and R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control and Cybernetics (C & C), 40 (2011), 971-988. · Zbl 1318.35080
[24] R. S. Keiffer; P. M. Jordan; I. C. Christov, Acoustic shock and acceleration waves in selected inhomogeneous fluids, Mech. Res. Commun., 93, 80-88 (2018)
[25] H. Lamb, The Dynamical Theory of Sound, 2nd ed. Dover Publications, Inc., New York, 1960. · Zbl 0098.42001
[26] J. D. Logan, An Introduction to Nonlinear Partial Differential Equations, Wiley, 1994. · Zbl 0834.35001
[27] F. E. Marble, Dynamics of dusty gases, Ann. Rev. Fluid Mech., 2, 397-446 (1970)
[28] J. P. Moran; S. F. Shen, On the formation of weak plane shock waves by impulsive motion of a piston, J. Fluid Mech., 25, 705-718 (1966) · Zbl 0141.42901
[29] M. Morduchow; P. A. Libby, On a complete solution of the one-dimensional flow equations of a viscous, heat-conducting, compressible gas, J. Aeronaut. Sci., 16, 674-684 (1949) · doi:10.2514/8.11882
[30] A. Morro, Jump relations and discontinuity waves in conductors with memory, Math. Comput. Modelling, 43, 138-149 (2006) · Zbl 1124.74026 · doi:10.1016/j.mcm.2005.04.016
[31] A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications, Acoustical Society of America, 1989.
[32] G. G. Stokes, An examination of the possible effect of the radiation of heat on the propagation of sound, Phil. Mag. (Ser. 4), 1 (1851), 305-317.
[33] B. Straughan, Stability and Wave Motion in Porous Media, Applied Mathematical Sciences, vol. 165, Springer, 2008, Chap. 8. · Zbl 1149.76002
[34] P. A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, 1972. · Zbl 0251.76001
[35] D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior, Taylor & Francis, \(1997, \begin{document}\S\end{document} 2.5.1\).
[36] J. von Neumann; R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21, 232-237 (1950) · Zbl 0037.12002 · doi:10.1063/1.1699639
[37] E. W. Weisstein, Lerch Transcendent, From MathWorld-A Wolfram Web Resource (http://mathworld.wolfram.com/LerchTranscendent.html).
[38] G. B. Whitham, Non-linear dispersive waves, Proc. R. Soc. London A, 283 (1965), 238-261. · Zbl 0125.44202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.