×

Stabilization of the nonconforming virtual element method. (English) Zbl 1524.65757

Summary: We address the issue of designing robust stabilization terms for the nonconforming virtual element method. To this end, we transfer the problem of defining the stabilizing bilinear form from the elemental nonconforming virtual element space, whose functions are not known in closed form, to the dual space spanned by the known functionals providing the degrees of freedom. By this approach, we manage to construct different bilinear forms yielding optimal or quasi-optimal stability bounds and error estimates, under weaker assumptions on the tessellation than the ones usually considered in this framework. In particular, we prove optimality under geometrical assumptions allowing a mesh to have a very large number of arbitrarily small edges per element. Finally, we numerically assess the performance of the VEM for several different stabilizations fitting with our new framework on a set of representative test cases.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs

Software:

PaStiX

References:

[1] Adams, R. A.; Fournier, J. J.F., Sobolev Spaces, Pure and Applied Mathematics (2003), Academic Press · Zbl 1098.46001
[2] Ahmad, B.; Alsaedi, A.; Brezzi, F.; Marini, L. D.; Russo, A., Equivalent projectors for virtual element methods, Comput. Math. Appl., 66, 376-391 (September 2013) · Zbl 1347.65172
[3] Antonietti, P. F.; Beirão da Veiga, L.; Scacchi, S.; Verani, M., A \(C^1\) virtual element method for the Cahn-Hilliard equation with polygonal meshes, SIAM J. Numer. Anal., 54, 1, 34-56 (2016) · Zbl 1336.65160
[4] Antonietti, P. F.; Manzini, G.; Verani, M., The fully nonconforming virtual element method for biharmonic problems, Math. Models Methods Appl. Sci., 28, 02, 387-407 (2018) · Zbl 1381.65090
[5] Antonietti, P. F.; Manzini, G.; Verani, M., The conforming virtual element method for polyharmonic problems, Comput. Math. Appl., 79, 7, 2021-2034 (2020) · Zbl 1452.65320
[6] Antonietti, P. F.; Mascotto, L.; Verani, M., A multigrid algorithm for the p-version of the virtual element method, ESAIM: Math. Model. Numer. Anal., 52, 1, 337-364 (2018) · Zbl 1397.65249
[7] Ayuso de Dios, B.; Lipnikov, K.; Manzini, G., The non-conforming virtual element method, ESAIM: Math. Model. Numer. Anal., 50, 3, 879-904 (2016) · Zbl 1343.65140
[8] Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 119-214 (2013) · Zbl 1416.65433
[9] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A., Virtual element methods for general second order elliptic problems on polygonal meshes, Math. Models Methods Appl. Sci., 26, 4, 729-750 (2016) · Zbl 1332.65162
[10] Beirão da Veiga, L.; Chernov, A.; Mascotto, L.; Russo, A., Basic principles of hp virtual elements on quasiuniform meshes, Math. Models Methods Appl. Sci., 26, 8, 1567-1598 (2016) · Zbl 1344.65109
[11] Beirão da Veiga, L.; Lipnikov, K.; Manzini, G., Arbitrary order nodal mimetic discretizations of elliptic problems on polygonal meshes, SIAM J. Numer. Anal., 49, 5, 1737-1760 (2011) · Zbl 1242.65215
[12] Beirão da Veiga, L.; Lipnikov, K.; Manzini, G., The Mimetic Finite Difference Method, MS&A. Modeling, Simulations and Applications, vol. 11 (2014), Springer · Zbl 1286.65141
[13] Beirão da Veiga, L.; Lovadina, C.; Mora, D., A virtual element method for elastic and inelastic problems on polytope meshes, Comput. Methods Appl. Mech. Eng., 295, 10 (2015) · Zbl 1423.74120
[14] Beirão da Veiga, L.; Lovadina, C.; Russo, A., Stability analysis for the virtual element method, Math. Models Methods Appl. Sci., 27, 13, 2557-2594 (2017) · Zbl 1378.65171
[15] Beirão da Veiga, L.; Lovadina, C.; Vacca, G., Divergence free virtual elements for the Stokes problem on polygonal meshes, ESAIM: Math. Model. Numer. Anal., 51, 2, 509-535 (2017) · Zbl 1398.76094
[16] Beirão da Veiga, L.; Lovadina, C.; Vacca, G., Virtual elements for the Navier-Stokes problem on polygonal meshes, SIAM J. Numer. Anal., 56, 3, 1210-1242 (2018) · Zbl 1397.65302
[17] Beirão da Veiga, L.; Manzini, G., A virtual element method with arbitrary regularity, IMA J. Numer. Anal., 34, 2, 782-799 (2014), (first published online 2013)
[18] Beirão da Veiga, L.; Manzini, G., Residual a posteriori error estimation for the virtual element method for elliptic problems, ESAIM: Math. Model. Numer. Anal., 49, 2, 577-599 (2015) · Zbl 1346.65056
[19] Benvenuti, E.; Chiozzi, A.; Manzini, G.; Sukumar, N., Extended virtual element method for the Laplace problem with singularities and discontinuities, Comput. Methods Appl. Mech. Eng., 356, 571-597 (2019) · Zbl 1441.74230
[20] Berrone, S.; Borio, A.; Manzini, SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations, Comput. Methods Appl. Mech. Eng., 340, 500-529 (2018) · Zbl 1440.65182
[21] Berrone, S.; Pieraccini, S.; Scialò, S.; Vicini, F., A parallel solver for large scale DFN flow simulations, SIAM J. Sci. Comput., 37, 3, C285-C306 (2015) · Zbl 1320.65167
[22] S. Bertoluzza, Algebraic representation of dual scalar products and stabilization of saddle point problems, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., in press. · Zbl 1490.65108
[23] Bertoluzza, S., Substructuring preconditioners for the three fields domain decomposition method, Math. Comput., 73, 246, 659-689 (2003) · Zbl 1042.65099
[24] Bertoluzza, S.; Pennacchio, M.; Prada, D., BDDC and FETI-DP for the virtual element method, Calcolo, 54, 1565-1593 (2017) · Zbl 1429.65274
[25] Bertoluzza, S.; Pennacchio, M.; Prada, D., FETI-DP for the three dimensional virtual element method, SIAM J. Numer. Anal., 58, 3, 1556-1591 (2020) · Zbl 1440.65183
[26] S. Bertoluzza, I. Perugia, D. Prada, A p-robust polygonal discontinuous Galerkin method with minus one stabilization, Math. Models Methods Appl. Sci., in press. · Zbl 1501.65107
[27] Bertoluzza, S.; Prada, D., A polygonal discontinuous Galerkin method with minus one stabilization, ESAIM: Math. Model. Numer. Anal. (2020)
[28] Bjørstad, P. E.; Widlund, O. B., Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal., 23, 6, 1093-1120 (1986) · Zbl 0615.65113
[29] Brackx, F.; Constales, D.; Ronveaux, R.; Serras, H., On the harmonic and monogenic decomposition of polynomials, J. Symb. Comput., 8, 297-304 (1989) · Zbl 0681.68046
[30] Bramble, J. H.; Pasciak, J. E.; Schatz, A. H., The construction of preconditioners for elliptic problems by substructuring. I, Math. Comput., 47, 175, 103-134 (1986) · Zbl 0615.65112
[31] Brenner, S. C., Poincaré-Friedrichs inequalities for piecewise \(H^1\) functions, SIAM J. Numer. Anal., 41 (2003) · Zbl 1045.65100
[32] Brezzi, F., Stability of saddle-points in finite dimensions, (Shardlow, T.; Blowey, J. F.; Craig, A. W., Frontiers in Numerical Analysis: Durham 2002. Frontiers in Numerical Analysis: Durham 2002, Universitext (2004), Springer), chapter 2
[33] Brezzi, F.; Buffa, A.; Lipnikov, K., Mimetic finite differences for elliptic problems, ESAIM: Math. Model. Numer. Anal., 43, 277-295 (2009) · Zbl 1177.65164
[34] Calvo, J. G., An overlapping Schwarz method for virtual element discretizations in two dimensions, Comput. Math. Appl., 77, 4, 1163-1177 (2019) · Zbl 1442.65425
[35] Cangiani, A.; Georgoulis, E. H.; Pryer, T.; Sutton, O. J., A posteriori error estimates for the virtual element method, Numer. Math., 137, 857-893 (2017) · Zbl 1384.65079
[36] Cangiani, A.; Gyrya, V.; Manzini, G., The non-conforming virtual element method for the Stokes equations, SIAM J. Numer. Anal., 54, 6, 3411-3435 (2016) · Zbl 1426.76230
[37] Cangiani, A.; Gyya, V.; Manzini, G.; Sutton, O., Chapter 14: virtual element methods for elliptic problems on polygonal meshes, (Hormann, K.; Sukumar, N., Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics (2017), CRC Press, Taylor & Francis Group), 1-20
[38] Cangiani, A.; Manzini, G.; Russo, A.; Sukumar, N., Hourglass stabilization of the virtual element method, Int. J. Numer. Methods Eng., 102, 3-4, 404-436 (2015) · Zbl 1352.65475
[39] Cangiani, A.; Manzini, G.; Sutton, O., Conforming and nonconforming virtual element methods for elliptic problems, IMA J. Numer. Anal., 37, 1317-1354 (2017), (online August 2016) · Zbl 1433.65282
[40] Cao, S.; Chen, L., Anisotropic error estimates of the linear nonconforming virtual element methods, SIAM J. Numer. Anal., 57, 1058-1081, Article 01 pp. (2019) · Zbl 1422.65376
[41] Certik, O.; Gardini, F.; Manzini, G.; Mascotto, L.; Vacca, G., The p- and hp-versions of the virtual element method for elliptic eigenvalue problems, Comput. Math. Appl., 79, 7, 2035-2056 (2020) · Zbl 1452.65326
[42] Certik, O.; Gardini, F.; Manzini, G.; Vacca, G., The virtual element method for eigenvalue problems with potential terms on polytopic meshes, Appl. Math., 63, 3, 333-365 (2018) · Zbl 1488.65196
[43] Chi, H.; Beirão da Veiga, L.; Paulino, G. H., Some basic formulations of the virtual element method (VEM) for finite deformations, Comput. Methods Appl. Mech. Eng., 318, 148-192 (2017) · Zbl 1439.74397
[44] Cohen, A.; Daubechies, I.; Feauveau, J.-C., Biorthogonal bases of compactly supported wavelets, Commun. Pure Appl. Math., 45, 5, 485-560 (1992) · Zbl 0776.42020
[45] Dahmen, W., Stability of multiscale transformations, J. Fourier Anal. Appl., 2, 4, 341-361 (1996) · Zbl 0919.46006
[46] Dassi, F.; Mascotto, L., Exploring high-order three dimensional virtual elements: bases and stabilizations, Comput. Math. Appl., 75, 9, 3379-3401 (2018) · Zbl 1409.65090
[47] Dassi, F.; Scacchi, S., Parallel block preconditioners for three-dimensional virtual element discretizations of saddle-point problems, Comput. Methods Appl. Mech. Eng., 372 (2020) · Zbl 1506.65204
[48] Dassi, F.; Scacchi, S., Parallel solvers for virtual element discretizations of elliptic equations in mixed form, Comput. Math. Appl., 79, 7, 1972-1989 (2020) · Zbl 1454.65017
[49] De Bellis, M. L.; Wriggers, P.; Hudobivnik, B., Serendipity virtual element formulation for nonlinear elasticity, Comput. Struct., 223, Article 106094 pp. (2019)
[50] Deadman, E.; Higham, N. J.; Ralha, R., Blocked Schur algorithms for computing the matrix square root, (Manninen, Pekka; Öster, Per, Applied Parallel and Scientific Computing (2013), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 171-182
[51] Di Pietro, D. A.; Droniou, J., The Hybrid High-Order Method for Polytopal Meshes, vol. 19 (2019), Springer
[52] Di Pietro, D. A.; Droniou, J.; Manzini, G., Discontinuous skeletal gradient discretisation methods on polytopal meshes, J. Comput. Phys., 355, 397-425 (2018) · Zbl 1380.65414
[53] Antonietti, P. F.; Bertoluzza, S.; Prada, D.; Verani, M., The virtual element method for a minimal surface problem, Calcolo, 57 (2020) · Zbl 1471.65191
[54] Faermann, B., Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary elements methods. Part I. The two-dimensional case, IMA J. Numer. Anal., 20, 2, 203-234 (2000) · Zbl 0959.65136
[55] Gardini, F.; Manzini, G.; Vacca, G., The nonconforming virtual element method for eigenvalue problems, ESAIM: Math. Model. Numer. Anal., 53, 749-774 (2019) · Zbl 1431.65214
[56] Hénon, P.; Ramet, P.; Roman, J., PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems, Parallel Comput., 28, 2, 301-321 (2002) · Zbl 0984.68208
[57] Higham, N. H., Computing real square roots of a real matrix, Linear Algebra Appl., 88-89, 405-430 (1987) · Zbl 0625.65032
[58] Huang, J.; Yu, Y., A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations, J. Comput. Appl. Math., 386, Article 04 pp. (2021) · Zbl 1457.65197
[59] Hudobivnik, B.; Aldakheel, F.; Wriggers, P., A low order 3D virtual element formulation for finite elasto-plastic deformations, Comput. Mech., 63, 253-269 (2018) · Zbl 1468.74085
[60] Li, M.; Zhao, J.; Huang, C.; Chen, S., Nonconforming virtual element method for the time fractional reaction-subdiffusion equation with non-smooth data, J. Sci. Comput. (2019) · Zbl 1440.65143
[61] Lipnikov, K.; Manzini, G.; Shashkov, M., Mimetic finite difference method, J. Comput. Phys., 257, Part B, 1163-1227 (2014) · Zbl 1352.65420
[62] Manzini, G.; Lipnikov, K.; Moulton, J. D.; Shashkov, M., Convergence analysis of the mimetic finite difference method for elliptic problems with staggered discretizations of diffusion coefficients, SIAM J. Numer. Anal., 55, 6, 2956-2981 (2017) · Zbl 1422.65321
[63] Manzini, G.; Russo, A.; Sukumar, N., New perspectives on polygonal and polyhedral finite element methods, Math. Models Methods Appl. Sci., 24, 8, 1621-1663 (2014) · Zbl 1291.65320
[64] Mascotto, L.; Perugia, I.; Pichler, A., A nonconforming Trefftz virtual element method for the Helmholtz problem, Math. Models Methods Appl. Sci., 29, Article 08 pp. (2019) · Zbl 1431.65218
[65] Mascotto, L.; Perugia, I.; Pichler, A., A nonconforming Trefftz virtual element method for the Helmholtz problem: numerical aspects, Comput. Methods Appl. Mech. Eng., 347 (2019) · Zbl 1440.65251
[66] Mascotto, L.; Pichler, A., Extension of the nonconforming Trefftz virtual element method to the Helmholtz problem with piecewise constant wave number, Appl. Numer. Math. (2019)
[67] Mora, D.; Rivera, G.; Rodríguez, R., A virtual element method for the Steklov eigenvalue problem, Math. Methods Appl. Sci., 25, 08, 1421-1445 (2015) · Zbl 1330.65172
[68] Paulino, G. H.; Gain, A. L., Bridging art and engineering using Escher-based virtual elements, Struct. Multidiscip. Optim., 51, 4, 867-883 (2015)
[69] Perugia, I.; Pietra, P.; Russo, A., A plane wave virtual element method for the Helmholtz problem, ESAIM: Math. Model. Numer. Anal., 50, 3, 783-808 (2016) · Zbl 1343.65137
[70] Steinbach, O., On a generalized \(L_2\) projection and some related stability estimates in Sobolev space s, Numer. Math., 90, 775-786 (2002) · Zbl 0997.65120
[71] Talischi, C.; Paulino, G. H.; Pereira, A.; Menezes, I. F.M., Polygonal finite elements for topology optimization: a unifying paradigm, Int. J. Numer. Methods Eng., 82, 671-698 (2010) · Zbl 1188.74072
[72] Wriggers, P.; Hudobivnik, B., A low order virtual element formulation for finite elasto-plastic deformations, Comput. Methods Appl. Mech. Eng., 327, 459-477 (2017) · Zbl 1439.74070
[73] Wriggers, P.; Reddy, B. D.; Rust, W.; Hudobivnik, B., Efficient virtual element formulations for compressible and incompressible finite deformations, Comput. Mech., 60, 253-268 (2017) · Zbl 1386.74146
[74] Wriggers, P.; Rust, W. T., A virtual element method for frictional contact including large deformations, Eng. Comput., 36, 2133-2161 (2019)
[75] Wriggers, P.; Rust, W. T.; Reddy, B. D., A virtual element method for contact, Comput. Mech., 58, 6, 1039-1050 (2016) · Zbl 1398.74420
[76] Zhang, B.; Zhao, J.; Yang, Y.; Chen, S., The nonconforming virtual element method for elasticity problems, J. Comput. Phys., 378, 394-410 (2019) · Zbl 1416.74092
[77] Zhang, J.; Zhao, B.; Chen, S., The nonconforming virtual element method for fourth-order singular perturbation problem, Adv. Comput. Math., 46, 2, Article 19 pp. (2020) · Zbl 1436.65191
[78] Zhao, J.; Chen, S.; Zhang, B., The nonconforming virtual element method for plate bending problems, Math. Models Methods Appl. Sci., 26, 9, 1671-1687 (2016) · Zbl 1396.74098
[79] Zhao, J.; Zhang, B.; Mao, S.; Chen, S., The divergence-free nonconforming virtual element method for the Stokes problem, SIAM J. Numer. Anal., 57, 6, 2730-2759 (2019) · Zbl 1427.65388
[80] Zhao, J.; Zhang, B.; Mao, S.; Chen, S., The nonconforming virtual element method for the Darcy-Stokes problem, Comput. Methods Appl. Mech. Eng., 370, Article 113251 pp. (2020) · Zbl 1506.76106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.