×

Convergence acceleration of preconditioned conjugate gradient solver based on error vector sampling for a sequence of linear systems. (English) Zbl 07790629

Summary: In this article, we focus on solving a sequence of linear systems that have identical (or similar) coefficient matrices. For this type of problem, we investigate subspace correction (SC) and deflation methods, which use an auxiliary matrix (subspace) to accelerate the convergence of the iterative method. In practical simulations, these acceleration methods typically work well when the range of the auxiliary matrix contains eigenspaces corresponding to small eigenvalues of the coefficient matrix. We develop a new algebraic auxiliary matrix construction method based on error vector sampling in which eigenvectors with small eigenvalues are efficiently identified in the solution process. We use the generated auxiliary matrix for convergence acceleration in the following solution step. Numerical tests confirm that both SC and deflation methods with the auxiliary matrix can accelerate the solution process of the iterative solver. Furthermore, we examine the applicability of our technique to the estimation of the condition number of the coefficient matrix. We also present the algorithm of the preconditioned conjugate gradient method with condition number estimation.

MSC:

65F10 Iterative numerical methods for linear systems
65F08 Preconditioners for iterative methods

References:

[1] XuJ. Iterative methods by space decomposition and subspace correction. SIAM Rev. 1992;34:581-613. · Zbl 0788.65037
[2] NicolaidesRA. Deflation of conjugate gradients with applications to boundary value problems. SIAM J Numer Anal. 1987;24(2):355-65. · Zbl 0624.65028
[3] TrottenbergU, OosterleeCW, SchüllerA. Multigrid. San Diego, CA: Elsevier; 2001.
[4] WesselingP. Multigrid algorithms. An introduction to multigrid methods. Hoboken, NJ: John Wiley & Sons Ltd; 1992 Corrected Reprint., R. T. Edwards, Inc., 2004.
[5] VuikC, SegalA, MeijerinkJA. An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients. J Comput Phys. 1999;152:385-403. · Zbl 0945.76048
[6] VuikC, FrankJ. Deflated ICCG method applied to problems with extreme contrasts in the coefficients. Proceedings of the 16th IMACS World Congress; 2000.
[7] De GersemH, HameyerK. A deflated iterative solver for magnetostatic finite element models with large differences in permeability. Eur Phys J Appl Phys. 2001;13:45-9.
[8] MifuneT, MoriguchiS, IwashitaT, ShimasakiM. Convergence acceleration of iterative solvers for the finite element analysis using the implicit and explicit error correction methods. IEEE Trans Magn. 2009;45(3):1438-41.
[9] IgarashiH, WatanabeK. Deflation techniques for computational electromagnetism: theoretical considerations. IEEE Trans Magn. 2011;47(5):1438-41.
[10] IwashitaT, KawaguchiS, MifuneT, MatsuoT. Automatic mapping operator construction for subspace correction method to solve a series of linear systems. JSIAM Lett. 2017;9:25-8. · Zbl 1460.65034
[11] KharchenkoSA, YereminAY. Eigenvalue translation based preconditioners for the GMRES
[(( k )\]\) method. Numer Linear Algebra Appl. 1995;2(1):51-77. · Zbl 0829.65036
[12] MorganRB. A restarted GMRES method augmented with eigenvectors. SIAM J Matrix Anal Appl. 1995;16(4):1154-71. · Zbl 0836.65050
[13] ErhelJ, BurrageK, PohlB. Restarted GMRES preconditioned by deflation. J Comput Appl Math. 1996;69(2):303-18. · Zbl 0854.65025
[14] MorganRB. GMRES with deflated restarting. SIAM J Sci Comput. 2002;24(1):20-37. · Zbl 1018.65042
[15] MorganRB, WilcoxW. Deflated iterative methods for linear equations with multiple right‐hand sides. arXiv preprint arXiv:math‐ph/0405053. 2004.
[16] GiraudL, GrattonS, PinelX, VasseurX. Flexible GMRES with deflated restarting. SIAM J Sci Comput. 2010;32(4):1858-78. · Zbl 1215.65057
[17] CarpenterMH, VuikC, LucasP, vanGijzenM, BijlH. A general algorithm for reusing Krylov subspace information. I. Unsteady Navier‐Stokes. Hampton, VA: Langley Research Center; 2010.
[18] SaadY, YeungM, ErhelJ, Guyomarc’hF. A deflated version of the conjugate gradient algorithm. SIAM J Sci Comput. 2000;21(5):1909-26. · Zbl 0955.65021
[19] Abdel‐RehimAM, MorganRB, NicelyDA, WilcoxW. Deflated and restarted symmetric Lanczos methods for eigenvalues and linear equations with multiple right‐hand sides. SIAM J Sci Comput. 2010;32(1):129-49. · Zbl 1209.65042
[20] KilmerME, De SturlerE. Recycling subspace information for diffuse optical tomography. SIAM J Sci Comput. 2006;27(6):2140-66. · Zbl 1103.65036
[21] GosseletP, ReyC, PebrelJ. Total and selective reuse of Krylov subspaces for the resolution of sequences of nonlinear structural problems. Int J Numer Methods Eng. 2013;94:60-83. · Zbl 1352.65105
[22] DaasHA, GrigoriL, HénonP, RicouxP. Recycling Krylov subspaces and truncating deflation subspaces for solving sequence of linear systems. ACM Trans Math Softw. 2021;47(2):1-30. · Zbl 07467973
[23] MorganRB. Restarted block‐GMRES with deflation of eigenvalues. Appl Numer Math. 2005;54(2):222-36. · Zbl 1074.65043
[24] SoodhalterKM, deSturlerE, KilmerME. A survey of subspace recycling iterative methods. GAMM Mitt. 2020;43(4):e202000016. · Zbl 1541.65019
[25] BrezinaM, FalgoutR, MacLachlanS, ManteuffelT, McCormickS, RugeJ. Adaptive algebraic multigrid. SIAM J Sci Comput. 2006;27(4):1261-86. · Zbl 1100.65025
[26] BrandtA, BrannickJ, KahlK, LivshitsI. Bootstrap AMG. SIAM J Sci Comput. 2011;33(2):612-32. · Zbl 1227.65120
[27] NomuraN, FujiiA, TanakaT, NakajimaK, MarquesO. Performance analysis of SA‐AMG method by setting extracted near‐kernel vectors. In: DutraI (ed.), CamachoR (ed.), BarbosaJ (ed.), MarquesO (ed.), editors. Proceedings of the International Conference on Vector and Parallel Processing. Cham: Springer; 2017. p. 52-63.
[28] D’ambraP, FilipponeS, VassilevskiPS. BootCMatch: a software package for bootstrap AMG based on graph weighted matching. ACM Trans Math Softw. 2018;44:1-25. · Zbl 1484.65059
[29] D’AmbraP, VassilevskiPS. Improving solve time of aggregation‐based adaptive AMG. Numer Linear Algebra Appl. 2019;26(6):e2269. · Zbl 1463.65401
[30] BakerAH, JessupER, ManteuffelT. A technique for accelerating the convergence of restarted GMRES. SIAM J Matrix Anal Appl. 2005;26(4):962-84. · Zbl 1086.65025
[31] ImakuraA, LiRC, ZhangSL. Locally optimal and heavy ball GMRES methods. Jpn J Ind Appl Math. 2016;33:471-99. · Zbl 1354.65063
[32] DavisTA, HuY. The university of Florida sparse matrix collection. ACM Trans Math Softw. 2011;38:1-25. · Zbl 1365.65123
[33] IwashitaT, KawaguchiS, MifuneT, MatsuoT. Acceleration of transient non‐linear electromagnetic field analyses using an automated subspace correction method. IEEE Trans Magn. 2019;55(6):1-4.
[34] MihajlovicMD, MijalkovicS. A component decomposition preconditioning for 3D stress analysis problems. Numer Linear Algebra Appl. 2002;9:567-83. · Zbl 1071.65548
[35] OvtchinnikovEE, XanthisLS. The discrete Korn’s type inequality in subspaces and iterative methods for thin elastic structures. Comput Methods Appl Mech Eng. 1998;160:23-37. · Zbl 0940.74035
[36] CarpentieriB, GiraudL, GrattonS. Additive and multiplicative two‐level spectral preconditioning for general linear systems. SIAM J Sci Comput. 2007;29(4):1593-612. · Zbl 1145.65023
[37] ZhaoT. A spectral analysis of subspace enhanced preconditioners. J Sci Comput. 2016;66(1):435-57. · Zbl 1341.65012
[38] SaadY. Iterative methods for sparse linear systems. 2nd ed.Philadelphia, PA: SIAM; 2003. · Zbl 1031.65046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.