×

Bézier surfaces and finite elements for MHD simulations. (English) Zbl 1141.76035

Summary: A finite element method based on bicubic Bézier surfaces is applied to the simulation of MHD instabilities relevant to magnetically confined fusion. The major advantage of the new technique is that it allows a natural way to implement mesh refinement strategy, which is not supported by a pure Hermite formulation. Compared to a Lagrangian formulation, the number of degrees of freedom is significantly reduced. The use of an isoparametric representation of space coordinates allows an accurate alignment of finite elements to the magnetic field line geometry in a tokamak plasma. The Bézier finite elements have been implemented in a MHD code using a nonlinear reduced MHD model in toroidal geometry. As an illustration, results for Soloviev equilibrium and time-dependent current-hole computations are presented and discussed.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics

Software:

HP90; MUMPS; PaStiX; NIMROD
Full Text: DOI

References:

[1] ITER Physics Expert Group on Disruptions, Plasma Control, and MHD and ITER Physics Basis Editors. Chapter 3: MHD stability, operational limits and disruptions. Nuclear Fusion 39(12) (1999) 2251-2389.; ITER Physics Expert Group on Disruptions, Plasma Control, and MHD and ITER Physics Basis Editors. Chapter 3: MHD stability, operational limits and disruptions. Nuclear Fusion 39(12) (1999) 2251-2389.
[2] Evans, T. E.; Moyer, R. A.; Burrell, K. H.; Fenstermacher, M. E.; Joseph, I.; Leonard, A. W.; Osborne, T. H.; Porter, G. D.; Schaffer, M. J.; Snyder, P. B.; Thomas, P. R.; Watkins, J. G.; West, W. P., Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas, Nature Physics, 2, 419-423 (2006)
[3] E. Nardon, M. Bécoulet, G. Huysmans, O. Czarny, P.R. Thomas, M. Lipa, R.A. Moyer, T.E. Evans, G. Federici, Y. Gribov, A. Polevoi, G. Saibene, A. Portone, A. Loarte, Edge localized modes control by resonant magnetic perturbations. Journal of Nuclear Materials in press.; E. Nardon, M. Bécoulet, G. Huysmans, O. Czarny, P.R. Thomas, M. Lipa, R.A. Moyer, T.E. Evans, G. Federici, Y. Gribov, A. Polevoi, G. Saibene, A. Portone, A. Loarte, Edge localized modes control by resonant magnetic perturbations. Journal of Nuclear Materials in press.
[4] Huysmans, G. T.A., ELMs: MHD instabilities at the transport barrier, Plasma Physics and Controlled Fusion, 47, B165-B178 (2005)
[5] Huysmans, G. T.A., External kink (peeling) modes in X-point geometry, Plasma Physics and Controlled Fusion, 47, 2107-2121 (2005)
[6] Sovinec, C. R.; Glasser, A. H.; Gianakon, T. A.; Barnes, D. C.; Nebel, R. A.; Kruger, S. E.; Schnack, D. D.; Plimpton, S. J.; Tarditi, A.; Chu, M. S., Nonlinear magnetohydrodynamics simulation using high-order finite elements, Journal of Computational Physics, 195, 355-386 (2004) · Zbl 1087.76070
[7] G.T.A. Huysmans, J.P. Goedbloed, W. Kerner, Isoparametric bicubic Hermite elements for solution of the Grad-Shafranov equation, in: Proceedings of the CP90 - Conference on Computational Physics (1991), World Scientific Publishing Co., p. 371.; G.T.A. Huysmans, J.P. Goedbloed, W. Kerner, Isoparametric bicubic Hermite elements for solution of the Grad-Shafranov equation, in: Proceedings of the CP90 - Conference on Computational Physics (1991), World Scientific Publishing Co., p. 371.
[8] Jardin, S. C., A triangular finite element with first-order continuity applied to fusion MHD applications, Journal of Computational Physics, 200, 133-152 (2004) · Zbl 1288.76043
[9] S.H.M. Roth, M.H. Gross, S. Turello, F.R. Carls. A Bernstein-Bézier approach to soft tissue simulation, in: Proceedings of Eurographics’98, Computer Graphics Forum, vol. 17-3, 1998, pp. 285-294.; S.H.M. Roth, M.H. Gross, S. Turello, F.R. Carls. A Bernstein-Bézier approach to soft tissue simulation, in: Proceedings of Eurographics’98, Computer Graphics Forum, vol. 17-3, 1998, pp. 285-294.
[10] P. Bézier, Petite histoire d’une idée bizarre (1), Bulletin de la section d’Histoire des Usines Renault, Tome 4, Juin 1982, N°24, pp. 256-268.; P. Bézier, Petite histoire d’une idée bizarre (1), Bulletin de la section d’Histoire des Usines Renault, Tome 4, Juin 1982, N°24, pp. 256-268.
[11] P. Bézier, Petite histoire d’une idée bizarre (2), Bulletin de la section d’Histoire des Usines Renault, Tome 4, December 1982, N°25, pp. 319-331.; P. Bézier, Petite histoire d’une idée bizarre (2), Bulletin de la section d’Histoire des Usines Renault, Tome 4, December 1982, N°25, pp. 319-331.
[12] Bernstein, S. N., Démonstration du théorème de Weierstrass, fondée sur le calcul des probabilités, Communications of the Society of Mathematics, Kharkow (2), 13, 1-2 (1912-1913) · JFM 43.0301.03
[13] T. Ueshiba, G. Roth, Generating smooth surfaces with bicubic splines over triangular meshes, in: Proceedings of the Second International Conference on Recent Advances in 3-D Digital Imaging and Modeling, 1999, pp. 302-311.; T. Ueshiba, G. Roth, Generating smooth surfaces with bicubic splines over triangular meshes, in: Proceedings of the Second International Conference on Recent Advances in 3-D Digital Imaging and Modeling, 1999, pp. 302-311.
[14] Ma, L.; Peng, Q., Smoothing of free-form surfaces with Bézier patches, Computer Aided Geometric Design, 12, 231-249 (1995) · Zbl 0875.68839
[15] Y. Liang, X. Ye, S. Fang, \(G^1\); Y. Liang, X. Ye, S. Fang, \(G^1\)
[16] Kiciak, P., Constructions of \(G^1\) continuous joins of rational Bézier patches, Computer Aided Geometric Design, 12, 283-303 (1995) · Zbl 0875.68836
[17] De Rose, T., Necessary and sufficient conditions for tangent plane continuity of Bézier surfaces, Computer Aided Geometric Design, 7, 179-195 (1990) · Zbl 0807.65008
[18] Liu, D., GC1 continuity conditions between two adjacent rational Bézier surface patches, Computer Aided Geometric Design, 7, 151-163 (1990) · Zbl 0713.65010
[19] Strang, G.; Fix, G. J., An Analysis of the Finite Element Method (1973), Prentice-Hall · Zbl 0278.65116
[20] Hirsch, C., Numerical computation of internal and external flows, Fundamentals of numerical discretization, vol. 1 (1988), John Wiley & Sons · Zbl 0662.76001
[21] Demkowicz, L.; Gerdes, K.; Schwab, C.; Bajer, A.; Walsh, T., HP90: A general and flexible Fortran 90 hp-FE code, Computing and Vizualization in Science, 1, 145-163 (1998) · Zbl 0912.68014
[22] Amestoy, P. R.; Duff, I. S.; L’Excellent, J.-Y., Multifrontal parallel distributed symmetric and unsymmetric solvers, Computer Methods in Applied Mechanics and Engineering, 184, 501-520 (2000) · Zbl 0956.65017
[23] Hénon, P.; Ramet, P.; Roman, J., PaStiX: a high-performance parallel direct solver for sparse symmetric definite systems, Parallel Computing, 28, 2, 301-321 (2002) · Zbl 0984.68208
[24] Goldapp, M., Approximation of circular arcs by cubic polynomials, Computer Aided Geometric Design, 8, 227-238 (1991) · Zbl 0756.41009
[25] Biskamp, D., Nonlinear Magnetohydrodynamics. Nonlinear Magnetohydrodynamics, Cambridge Monographs on Plasma Physics (1993), Cambridge University Press
[26] Freidberg, J. P., Ideal Magnetohydrodynamics (1987), Plenum Press: Plenum Press New York
[27] Wesson, J., Tokamaks (2004), Clarendon Press: Clarendon Press Oxford · Zbl 1111.82054
[28] Soloviev, L. S., (Leontovitch, M. A., Reviews of Plasma Physics, 6 (1975), New York: New York Consultant Bureau), 257
[29] Briguglio, S.; Zonca, F.; Vlad, G., Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfvén modes in tokamaks, Physics of Plasmas, 5, 3287-3301 (1998)
[30] Huysmans, G. T.A.; Hender, T. C.; Hawkes, N. C.; Litaudon, X., MHD stability of advanced tokamak scenarios with reversed central current: an explanation of the “current hole”, Physical Review Letters, 87, 24, 245002 (2001)
[31] Ara, G.; Basu, B.; Coppi, B., Magnetic reconnection and \(m=1\) oscillations in current carrying plasmas, Annals of Physics, 112, 443-476 (1978)
[32] Biskamp, D., Magnetic reconnection via current sheets, Physics of Fluids, 29, 5, 1520-1531 (1986) · Zbl 0595.76049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.