×

Is pollution effect of finite difference schemes avoidable for multi-dimensional Helmholtz equations with high wave numbers? (English) Zbl 1488.65562

Summary: This paper presents an approach using the method of separation of variables applied to 2D Helmholtz equations in the Cartesian coordinate. The solution is then computed by a series of solutions resulted from solving a sequence of 1D problems, in which the 1D solutions are computed using pollution free difference schemes. Moreover, non-polluted numerical integration formulae are constructed to handle the integration due to the forcing term in the inhomogeneous 1D problems. Consequently, the computed solution does not suffer the pollution effect. Another attractive feature of this approach is that a direct method can be effectively applied to solve the tridiagonal matrix resulted from numerical discretization of the 1D Helmholtz equation. The method has been tested to compute 2D Helmholtz solutions simulating electromagnetic scattering from an open large cavity and rectangular waveguide.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65F05 Direct numerical methods for linear systems and matrix inversion
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
78A50 Antennas, waveguides in optics and electromagnetic theory
35Q60 PDEs in connection with optics and electromagnetic theory
Full Text: DOI

References:

[1] M. Ainsworth, Discrete dispersion relation for hp-version finite element approximation at high wave number, SIAM J. Numer. Anal. 42 (2005) 553-575. · Zbl 1074.65112
[2] S. Andouze, O. Goubet, P. Poullet, A multilevel method for solving the Helmholtz equa-tion: the analysis of the one-dimensional case, Int. J. Numer. Anal. Model. 8 (2011) 365-372. · Zbl 1263.65126
[3] I. Babuska, U. Banerjee, Stable generalized finite element method (SGFEM), Comput. Meth-ods Appl. Mech. Engrg. 201-204 (2012) 91-111. · Zbl 1239.74093
[4] I. Babuska, F. Ihlenburg, E. Paik, S. Sauter, A generalized finite element method for solv-ing the Helmholtz equation in two dimensions with minimal pollution, Comput. Methods Appl. Mech. Engrg. 128 (1995) 325-359. · Zbl 0863.73055
[5] I. Babuska, S. A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Review 42 (2000) 451-484. · Zbl 0956.65095
[6] G. Bao, W. Sun, A fast algorithm for the electromaginetic scattering from a large cavity, SIAM J. Sci. Comput. 27 (2005) 553-574. · Zbl 1089.78024
[7] G. Bao, G.W. Wei, S. Zhao, Numerical solution of the helmholtz equation with high wavenumbers, Int. J. Numer. Meth. Engng. 59 (2004) 389-408. · Zbl 1043.65132
[8] G. Bao, K. Yun, Z. Zhou, Stability of the scattering from a large electromagnetic cavity in two dimensions, SIAM J. Math. Anal. 44 (2012) 383-404. · Zbl 1275.78007
[9] M. Bollhofer, M. Grote, O. Schenk, Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media, SIAM J. Sci. Comput. 31 (2009) 3781-3805. · Zbl 1203.65273
[10] D. Britt, S. Tsynkov, E. Turkel, A higher-order numerical method for the Helmholtz equa-tion with non-standard boundary conditions, submitted. · Zbl 1281.65135
[11] S. Britt, S. Tsynkov, E. Turkel, Numerical simulation of time-harmonic waves in inhomo-geneous media using compact high order schemes, Commun. Comput. Phys. 9 (2011) 520-541. · Zbl 1364.78034
[12] S. Britt, S. Tsynkov, E. Turkel, A Compact Fourth Order Scheme for the Helmholtz Equation in Polar Coordinates, J. Sci. Comput. 45 (2010) 26-47. · Zbl 1203.65218
[13] R. S. Callihan, A. W. Wood, A modified Helmholtz equation with impedance boundary conditions, Adv. Appl. Math. Mech. 4 (2012) 703-718. · Zbl 1262.65166
[14] Z. Chen, D. Cheng, W. Feng, T. Wu, An optimal 9-point finite difference scheme for the Helmholtz equation with PML, Int. J. Numer. Anal. Model. 10 (2013) 389-410. · Zbl 1272.65081
[15] Z. Chen, D. Cheng, T. Wu, A dispersion minimizing finite difference scheme and precon-ditioned solver for the 3D Helmholtz equation, J. Comput. Phys. 231 (2012) 8152-8175. · Zbl 1284.35145
[16] H. Chen, P. Lu, X. Xu, A robust multilevel method for hybridizable discontinuous Galerkin method for the Helmholtz equation, J. Comput. Phys. 264 (2014) 133-151. · Zbl 1349.65613
[17] H. Chen, H. Wu, X. Xu, Multilevel preconditioner with stable coarse grid corrections for the Helmholtz equation, SIAM J. Sci. Comput. 37 (2015) A221-A244. · Zbl 1326.65039
[18] J. Coatléven. P. Joly, Operator factorization for multiple-scattering problems and an appli-cation to periodic media, Commun. Comput. Phys. 11 (2012) 303-318. · Zbl 1373.74054
[19] A. Deraemaeker, I. Babuska, P. Bouillard, Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions, Int. J. Numer. Meth. Engng. 46 (1999) 471-499. · Zbl 0957.65098
[20] K. Du, B. Li, W. Sun, A numerical study on the stability of a class of Helmholtz problems, J. Comput. Phys. 287 (2015) 46-59. · Zbl 1351.78038
[21] B. Enquist, A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp. 31 (1977) 629-651. · Zbl 0367.65051
[22] B. Engquist, L. Ying, Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation, Commun. Pure Appl. Math. LXIV (2011) 697-735. · Zbl 1229.35037
[23] X. Feng, Z. Li, Z. Qiao, High order compact finite difference schemes for the Helmholtz equation with discontinuous coefficients, J. Comput. Math. 29 (2011) 324-340. · Zbl 1249.65214
[24] X. Feng, H. Wu, hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number, Math. Comp. 80 (2011) 1997-2024. · Zbl 1228.65222
[25] Y. Fu, Compact fourth-order finite difference schemes for Helmholtz equation with high wave numbers, J. Comput. Math. 26 (2008) 98-111. · Zbl 1174.65042
[26] L. Halpern, L. Trefethen, Wide-angle one-way wave equations, J. Acoust. Soc. Am. 84 (1988) 1397-1404.
[27] I. Harari, E. Turkel, Accurate finite difference methods for time-harmonic wave propaga-tion, J. Comput. Phys. 119 (1995) 252-270. · Zbl 0848.65072
[28] V. Henner, T. Belozaroza, K. Forinash, Mathematical methods in physics: Partial differential equations, fourier series, and special functions, A.K. Peters, Ltd., 2009. · Zbl 1181.00005
[29] G. Hsiao, F. Liu, J. Sun, L. Xu, A coupled BEM and FEM for the interior transmission problem in acoustics, J. Comput. Appl. Math. 235 (2011) 5213-5221. · Zbl 1256.76048
[30] F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Spring, NewYork, 1998. · Zbl 0908.65091
[31] F. Ihlenburg, I. Babuska, Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation, Int. J. Numer. Meth. Engng. 38 (1995) 3745-3774. · Zbl 0851.73062
[32] F. Ihlenburg, I, Babuska, Finite element solution of the Helmholtz equation with high wave number part II: the h− p version of the FEM, SIAM J. Numer. Anal. 34 (1997) 315-358. · Zbl 0884.65104
[33] K. Ito, Z. Qiao, J. Toivanen, A domain decomposition solver for acoustic scattering by elas-tic objects in layered media. J. Comput. Phys. 227 (2008) 8685-8698. · Zbl 1145.74038
[34] C. Jo, C. Shin, J. Suh, An optimal 9-point, finite-difference, frequency-space 2-D scalar wave extrapolator, Geophysics 61 (1996) 529-537.
[35] S. Kim, H. Zhang, Optimized schwarz method with complete radiation transmision comdi-tions for the Helmholtz equation in waveguides, SIAM J. Numer. Anal. 53 (2015) 1537-1558. · Zbl 1327.78025
[36] A. Laird, M. Giles, Preconditioned iterative solution of the 2D Helmholtz equation, Tech-nical report 02/12, Oxford University Computing Laboratory, Oxford, 2002.
[37] L. Lambe, R. Luczak, J. Nehrbass. A new finite difference method for the Helmholtz equa-tion using symbolic computation, Int. J. Comput. Engrg. Sci., 4 (2003) 121-144.
[38] H. Li, H. Ma, W. Sun, Legendre spectral Galerkin method for electromagnetic scattering from large cavities, SIAM J. Numer. Anal. 51 (2013) 353-376. · Zbl 1285.78002
[39] J. Ma, J. Zhu, M. Li, The Galerkin boundary element method for exterior problems of 2-D Helmholtz equation with arbitrary wavenumber, Engrg. Anal. Boundary Elem. 34 (2010) 1058-1063. · Zbl 1244.65205
[40] J. Melenk, S. Sauter, Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comp. 79 (2010) 1871-1914. · Zbl 1205.65301
[41] M. Nabavia, M. Siddiqui, J. Dargahi, A new 9-point sixth-order accurate compact finite-difference method for the Helmholtz equation, J. Sound Vibration 307 (2007) 972-982.
[42] S. Operto, J. Virieux, P. Amestoy, J. L’Excellent, L. Giraud. H. Ali, 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively par-allel direct solver: A feasibility study, Geophysics 72 (2007) SM195-SM211.
[43] B. Reps, W. Vanroose, Analyzing the wave number dependency of the convergence rate of a multigrid preconditioned Krylov method for the Helmholtz equation with an absorbing layer, Numer. Linear Algebra Appl. 19 (2012) 232-252. · Zbl 1274.65323
[44] I. Singer, Sixth-order accurate finite difference schemes for the Helmholtz equation, J. Com-put. Acoust. 14 (2006) 339-351. · Zbl 1198.65210
[45] I. Singer, E. Turkel, High-order finite difference methods for the Helmholtz equation, Com-put. Methods Appl. Mech. Engrg. 163 (1998) 343-358. · Zbl 0940.65112
[46] J. Shen, L. Wang, Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains, SIAM J. Numer. Anal. 45 (2007) 1954-1978. · Zbl 1154.65082
[47] J. Shen, L. Wang, Spectral approximation of the Helmholtz equation with high wave num-bers, SIAM J. Numer. Anal. 43 (2005) 623-644. · Zbl 1091.65119
[48] C. Shin, H. Sohn, A frequency-space 2-D scalar wave exteapolator using extended 25-point finite-diffrence operator, Geophysics, 63 (1998) 289-296.
[49] T. Strouboulis, I. Babuska, R. Hidajat, The generalized finite element method for Helmholtz equation: Theory, computation, and open problems, Comput. Methods Appl. Mech. Engrg. 195 (2006) 4711-4731. · Zbl 1120.76044
[50] W. Sun, J. Wu, Interpolatory quadrature rules for Hadamard finite-part integrals and their superconvergence, IMA J. Numer. Anal. 28 (2008) 580-597. · Zbl 1148.65020
[51] G. Sutmann, Compact finite difference schemes of sixth order for the Helmholtz equation, J. Comput. Appl. Math. 203 (2007) 15-31. · Zbl 1112.65099
[52] R. Tezaura, I. Kalashnikovab, C. Farhata, The discontinuous enrichment method for medium-frequency Helmholtz problems with a spatially variable wavenumber, Comput. Methods Appl. Mech. Engrg. 268 (2014) 126-140. · Zbl 1295.76030
[53] E. Turkel, D. Gordon, R. Gordon, S. Tsynkov, Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number, J. Comput. Phys. 232 (2013) 272-287. · Zbl 1291.65273
[54] K. Wang, Y.S. Wong, Pollution-free finite difference schemes for non-homogeneous Helmholtz equation, Int. J. Numer. Anal. Model. 11 (2014) 787-815. · Zbl 1499.65614
[55] K. Wang, Y.S. Wong, J. Deng, Efficient and accurate numerical solutions for Helmholtz equation in polar and spherical coordinates, Commun. Comput. Phys. 17 (2015) 779-807. · Zbl 1388.65138
[56] Y.S. Wong, G. Li, Exact finite difference schemes for solving Helmholtz equation at any wavenumber, Int. J. Numer. Anal. Model. Ser. B 2 (2011) 91-108. · Zbl 1272.65083
[57] H. Wu, Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: linear version, IMA J. Numer. Anal. 34 (2014) 1266-1288. · Zbl 1296.65144
[58] J. Wu, Y. Wang, W. Li, W. Sun, Toeplitz-type approximations to the Hadamard integral operator and their applications to electromagnetic cavity problems, Appl. Numer. Math. 58 (2008) 101-121. · Zbl 1130.78009
[59] M. Zhao, A fast high order iterative solver for the electromagnetic scattering by open cavi-ties filled with the inhomogeneous media, Adv. Appl. Math. Mech. 5 (2013) 235-257. · Zbl 1262.65147
[60] M. Zhao, Z. Qiao, T. Tang, A fast high order method for electromagnetic scattering by large open cavities, J. Comput. Math. 29 (2011) 287-304. · Zbl 1249.78020
[61] L. Zhu, E. Burman, H. Wu, Continuous interior penalty finite element method for Helmholtz equation with high wave number: one dimensional analysis, arXiv:1211.1424v1 [math.NA]. · Zbl 1364.65149
[62] L. Zhu, H. Wu, Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: hp-version, SIAM J. Numer. Anal. 51 (2013) 1828-1852. · Zbl 1416.65468
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.