×

Estimating the non-dimensional energy of vortex rings by modelling their roll-up. (English) Zbl 1501.76018

Summary: The non-dimensional energy of starting vortex rings typically converges to values around 0.33 when they are created by a piston-cylinder or a bluff body translating at a constant speed. To explore the limits of the universality of this value and to analyse the variations that occur outside of those limits, we present an alternative approach to the slug-flow model to predict the non-dimensional energy of a vortex ring. Our approach is based on the self-similar vortex sheet roll-up described by D. I. Pullin [J. Fluid Mech. 88, 401–430 (1978; Zbl 0393.76018)]. We derive the vorticity distribution for the vortex core resulting from a spiralling shear layer roll-up and compute the associated non-dimensional energy. To demonstrate the validity of our model for vortex rings generated through circular nozzles and in the wake of disks, we consider different velocity profiles of the vortex generator that follow a power law with a variable time exponent \(m\). Higher values of \(m\) indicate a more uniform vorticity distribution. For a constant velocity (\(m=0\)), our model yields a non-dimensional energy of \(E^\ast=0.33\). For a constant acceleration (\(m=1\)), we find \(E^\ast=0.19\). The limiting value \(m \rightarrow \infty\) corresponds to a uniform vorticity distribution and leads to \(E^\ast=0.16\), which is close to values found in the literature for Hill’s spherical vortex. The radial diffusion of the vorticity within the vortex core results in the decrease of the non-dimensional energy. For a constant velocity, we obtain realistic vorticity distributions by radially diffusing the vorticity distribution of the Pullin spiral and predict a decrease of the non-dimensional energy from 0.33 to 0.28, in accordance with experimental results. Our proposed model offers a practical alternative to the existing slug flow model to predict the minimum non-dimensional energy of a vortex ring. The model is applicable to piston-generated and wake vortex rings and only requires the kinematics of the vortex generator as input.

MSC:

76B47 Vortex flows for incompressible inviscid fluids
76D17 Viscous vortex flows

Citations:

Zbl 0393.76018

References:

[1] Benjamin, T.B.1976 The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics. In Applications of Methods of Functional Analysis to Problems in Mechanics (ed. P. Germain & B. Nayroles), pp. 8-29. Springer. · Zbl 0369.76048
[2] Dabiri, J.O. & Gharib, M.2005Starting flow through nozzles with temporally variable exit diameter. J. Fluid Mech.538, 111-136. · Zbl 1108.76308
[3] Danaila, I. & Hélie, J.2008Numerical simulation of the postformation evolution of a laminar vortex ring. Phys. Fluids20 (7), 073602. · Zbl 1182.76178
[4] Francescangeli, D. & Mulleners, K.2021Discrete shedding of secondary vortices along a modified Kaden spiral. J. Fluid Mech.917, A44. · Zbl 1492.76046
[5] Friedman, A. & Turkington, B.1981Vortex rings: existence and asymptotic estimates. Trans. Am. Math. Soc.268 (1), 1-37. · Zbl 0497.76031
[6] Gharib, M., Rambod, E. & Shariff, K.1998A universal time scale for vortex ring formation. J. Fluid Mech.360, 121-140. · Zbl 0922.76021
[7] De Guyon, G. & Mulleners, K.2021Scaling of the translational velocity of vortex rings behind conical objects. Phys. Rev. Fluids6 (2), 024701.
[8] Hill, M.J.M.1894VI. On a spherical vortex. Trans. R. Soc. Lond. A185, 213-245. · JFM 25.1471.01
[9] Johari, H. & Stein, K.2002Near wake of an impulsively started disk. Phys. Fluids14 (10), 3459-3474. · Zbl 1185.76189
[10] Kaden, H.1931Aufwicklung einer unstabilen Unstetigkeitsfl. Ing.-Arch.2, 140-168. · JFM 57.1135.06
[11] Kaplanski, F., Fukumoto, Y. & Rudi, Y.2012Reynolds-number effect on vortex ring evolution in a viscous fluid. Phys. Fluids24 (3), 033101.
[12] Krieg, M. & Mohseni, K.2021A new kinematic criterion for vortex ring pinch-off. Phys. Fluids33 (3), 037120.
[13] Lepage, C., Leweke, T. & Verga, A.2005Spiral shear layers: roll-up and incipient instability. Phys. Fluids17 (3), 031705. · Zbl 1187.76302
[14] Limbourg, R. & Nedić, J.2021aFormation of an orifice-generated vortex ring. J. Fluid Mech.913, A29.
[15] Limbourg, R. & Nedić, J.2021bAn extended model for orifice starting jets. Phys. Fluids33 (6), 067109.
[16] Limbourg, R. & Nedić, J.2021cOn the asymptotic matching procedure predicting the formation number. Phys. Fluids33 (11), 117103.
[17] Linden, P.F. & Turner, J.S.2001The formation of ‘optimal’ vortex rings, and the efficiency of propulsion devices. J. Fluid Mech.427, 61-72. · Zbl 0981.76015
[18] Maxworthy, T.1977Some experimental studies of vortex rings. J. Fluid Mech.81 (3), 465-495.
[19] Mohseni, K. & Gharib, M.1998A model for universal time scale of vortex ring formation. Phys. Fluids10 (10), 2436-2438.
[20] Mohseni, K., Ran, H. & Colonius, T.2001Numerical experiments on vortex ring formation. J. Fluid Mech.430, 267-282. · Zbl 0989.76012
[21] Nitsche, M. & Krasny, R.1994A numerical study of vortex ring formation at the edge of a circular tube. J. Fluid Mech.276, 139-161. · Zbl 0864.76022
[22] Norbury, J.1973A family of steady vortex rings. J. Fluid Mech.57 (3), 417-431. · Zbl 0254.76018
[23] Pullin, D.I.1978The large-scale structure of unsteady self-similar rolled-up vortex sheets. J. Fluid Mech.88 (3), 401-430. · Zbl 0393.76018
[24] Pullin, D.I.1979Vortex ring formation at tube and orifice openings. Phys. Fluids22 (3), 401-403.
[25] Pullin, D.I. & Sader, J.E.2020On the starting vortex generated by a translating and rotating flat plate. J. Fluid Mech.906, A9. · Zbl 1461.76087
[26] Rosenfeld, M., Rambod, E. & Gharib, M.1998Circulation and formation number of laminar vortex rings. J. Fluid Mech.376, 297-318. · Zbl 0935.76040
[27] Saffman, P.G.1975on the formation of vortex rings. Stud. Appl. Maths54 (3), 261-268. · Zbl 0319.76019
[28] Shusser, M. & Gharib, M.2000Energy and velocity of a forming vortex ring. Phys. Fluids12 (3), 618-621. · Zbl 1149.76537
[29] Shusser, M., Gharib, M. & Mohseni, K.1999 A new model for inviscid vortex ring formation. In 30th Fluid Dynamics Conference, AIAA 99-3805.
[30] Shusser, M., Rosenfeld, M., Dabiri, J.O. & Gharib, M.2006Effect of time-dependent piston velocity program on vortex ring formation in a piston/cylinder arrangement. Phys. Fluids18 (3), 033601.
[31] Weigand, A. & Gharib, M.1997On the evolution of laminar vortex rings. Exp. Fluids22 (6), 447-457.
[32] Xu, L. & Nitsche, M.2014Scaling behaviour in impulsively started viscous flow past a finite flat plate. J. Fluid Mech.756 (4), 689-715.
[33] Yang, A.L., Jia, L.B. & Yin, X.Z.2012Formation process of the vortex ring generated by an impulsively started circular disc. J. Fluid Mech.713, 61-85. · Zbl 1284.76034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.