×

On a link criterion for Lipschitz normal embeddings among definable sets. (English) Zbl 1532.14022

On some connected definable set \(X\subset \mathbb{R}^{n}\) one has two natural metrics: the restriction of the Euclidean metric of the ambient space called outer metric, and the inner metric, where the distance between two points in \(X\) is the infimum of the lengths of rectifiable curves within \(X\) connecting these points. One says that \(X\) is “Lipschitz normally embedded” if these two metrics are equivalent.
It was shown in [R. Mendes and J. E. Sampaio, “On the link of Lipschitz normally embedded sets”, Preprint, arXiv:2101.05572] that a subanalytic space germ \((X,0)\) is Lipschitz normally embedded if and only if its link is Lipschitz normally embedded. The author shows that this equivalence still holds for definable germs in any o-minimal structure on \((\mathbb{R}, +, \cdot)\). He also produces an interesting example which gives a negative answer to a question concerning the recently introduced “moderately discontinuous homology”.

MSC:

14B05 Singularities in algebraic geometry
32C05 Real-analytic manifolds, real-analytic spaces

References:

[1] A.Belotto da Silva, L.Fantini, and A.Pichon, On lipschitz normally embedded complex surface germs (2020), https://arxiv.org/abs/2006.01773. · Zbl 1532.14015
[2] L.Birbrair, A.Fernandes, and W. D.Neumann, On normal embedding of complex algebraic surfaces, Real and complex singularities, London Math. Soc. Lecture Note Ser., vol. 380, Cambridge Univ. Press, Cambridge, 2010, pp. 17-22. · Zbl 1215.14057
[3] L.Birbrair and R.Mendes, Arc criterion of normal embedding, Singularities and foliations. Geometry, topology and applications, Springer Proc. Math. Stat., vol. 222, Springer, Cham, 2018, pp. 549-553. https://doi.org/10.1007/978‐3‐319‐73639‐6_19. · Zbl 1405.14004 · doi:10.1007/978‐3‐319‐73639‐6_19
[4] L.Birbrair, R.Mendes, and J. J.Nuño Ballesteros, Metrically un‐knotted corank 1 singularities of surfaces in \(\mathbb{R}^4 \), J. Geom. Anal.28 (2018) , no. 4, 3708-3717. https://doi.org/10.1007/s12220‐017‐9973‐2. · Zbl 1470.14007 · doi:10.1007/s12220‐017‐9973‐2
[5] L.Birbrair and T.Mostowski, Normal embeddings of semialgebraic sets, Michigan Math. J.47 (2000), no. 1, 125-132. https://doi.org/10.1307/mmj/1030374672. · Zbl 0983.32005 · doi:10.1307/mmj/1030374672
[6] J. F.Bobadilla, S.Heinze, M. P.Pereira, and J. E.Sampaio, Moderately discontinuous homology, Commun. Pure Appl. Math.75 (2022), no. 10, 2123-2200. https://doi.org/10.1002/cpa.22013. · Zbl 1511.14004 · doi:10.1002/cpa.22013
[7] M.Coste, An introduction to o‐minimal geometry, Dip. Mat. Univ. Pisa, Dottorato di Ricerca inMatematica, Istituti Editoriali e Poligrafici Internazionali, Pisa, 2000.
[8] M.Coste and K.Kurdyka, On the link of a stratum in a real algebraic set, Topology31 (1992), no. 2, 323-336. https://doi.org/10.1016/0040‐9383(92)90025‐D. · Zbl 0787.14038 · doi:10.1016/0040‐9383(92)90025‐D
[9] M.Denkowski and M.Tibăr, Testing Lipschitz non‐normally embedded complex spaces, Bull. Math. Soc. Sci. Math. Roumanie (N.S.)62(110) (2019), no. 1, 93-100. · Zbl 1449.14001
[10] A.Fernandes and J. E.Sampaio, Tangent cones of Lipschitz normally embedded sets are Lipschitz normally embedded. Appendix by Anne Pichon and Walter D. Neumann, Int. Math. Res. Not.2019 (2019), no. 15, 4880-4897. https://doi.org/10.1093/imrn/rnx290. · Zbl 1457.32014 · doi:10.1093/imrn/rnx290
[11] A.Fernandes and J. E.Sampaio, On Lipschitz rigidity of complex analytic sets, J. Geom. Anal.30 (2020), no. 1, 706-718. https://doi.org/10.1007/s12220‐019‐00162‐x. · Zbl 1448.14002 · doi:10.1007/s12220‐019‐00162‐x
[12] K.Katz, M.Katz, D.Kerner, and Y.Liokumovich, Determinantal variety and normal embedding, J. Topol. Anal.10 (2018), no. 1, 27-34. https://doi.org/10.1142/S1793525318500073. · Zbl 1406.53048 · doi:10.1142/S1793525318500073
[13] D.Kerner, H. M. l.Pedersen, and M. A. S.Ruas, Lipschitz normal embeddings in the space of matrices, Math. Z.290 (2018), nos. 1-2, 485-507. https://doi.org/10.1007/s00209‐017‐2027‐4. · Zbl 1419.14003 · doi:10.1007/s00209‐017‐2027‐4
[14] K.Kurdyka, On a subanalytic stratification satisfying a Whitney property with exponent 1, Real algebraic geometry (Rennes, 1991), Lecture Notes in Math., vol. 1524, Springer, Berlin, 1992, pp. 316-322. https://doi.org/10.1007/BFb0084630. · Zbl 0779.32006 · doi:10.1007/BFb0084630
[15] K.Kurdyka and A.Parusiński, Quasi‐convex decomposition in o‐minimal structures. Application to the gradient conjecture, Singularity theory and its applications, Adv. Stud. Pure Math., vol. 43, Math. Soc. Japan, Tokyo, 2006, pp. 137-177. https://doi.org/10.2969/aspm/04310137. · Zbl 1132.32004 · doi:10.2969/aspm/04310137
[16] T. L.Loi, Whitney stratification of sets definable in the structure \({\bf R}_{\exp }\), Singularities and differential equations (Warsaw, 1993), Banach Center Publ., vol. 33, Polish Acad. Sci. Inst. Math., Warsaw, 1996, pp. 401-409. · Zbl 0904.14030
[17] T. L.Loi, Verdier and strict Thom stratifications in o‐minimal structures, Illinois J. Math.42 (1998), no. 2, 347-356. https://projecteuclid.org/euclid.ijm/1256045049. · Zbl 0909.32008
[18] R.Mendes and J. E.Sampaio, On Link of Lipschitz normally embedded sets (2021). https://arxiv.org/pdf/2101.05572.pdf.
[19] F.Misev and A.Pichon, Lipschitz normal embedding among superisolated singularities, Int. Math. Res. Not.2021 (2021), no. 17, 13546-13569. · Zbl 1490.14006
[20] W. D.Neumann, H. M. l.Pedersen, and A.Pichon, A characterization of Lipschitz normally embedded surface singularities, J. Lond. Math. Soc. (2)101 (2020), no. 2, 612-640. https://doi.org/10.1112/jlms.12280. · Zbl 1441.14015 · doi:10.1112/jlms.12280
[21] W. D.Neumann, H. M. l.Pedersen, and A.Pichon, Minimal surface singularities are Lipschitz normally embedded, J. Lond. Math. Soc. (2)101 (2020), no. 2, 641-658. https://doi.org/10.1112/jlms.12280. · Zbl 1441.14016 · doi:10.1112/jlms.12280
[22] N.Nguyen, S.Trivedi, and D.Trotman, A geometric proof of the existence of definable Whitney stratifications, Illinois J. Math.58 (2014), no. 2, 381-389. http://projecteuclid.org/euclid.ijm/1436275489. · Zbl 1347.03076
[23] N.Nguyen and G.Valette, Whitney stratifications and the continuity of local Lipschitz-Killing curvatures, Ann. Inst. Fourier (Grenoble)68 (2018), no. 5, 2253-2276. http://aif.cedram.org/item?id=AIF_2018__68_5_2253_0. · Zbl 1409.14009
[24] G.Valette, On subanalytic geometry, survey, https://www2.im.uj.edu.pl/gkw/sub.pdf
[25] G.Valette, Lipschitz triangulations, Illinois J. Math.49 (2005), no. 3, 953-979. https://projecteuclid.org/euclid.ijm/1258138230. · Zbl 1154.14323
[26] G.Valette, The link of the germ of a semi‐algebraic metric space, Proc. Amer. Math. Soc.135 (2007), no. 10, 3083-3090. https://doi.org/10.1090/S0002‐9939‐07‐08878‐8. · Zbl 1123.14030 · doi:10.1090/S0002‐9939‐07‐08878‐8
[27] L.van denDries, Tame topology and o‐minimal structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998, pp. x+180, https://doi.org/10.1017/CBO9780511525919. · Zbl 0953.03045 · doi:10.1017/CBO9780511525919
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.