×

The “zero-two” law in Orlicz-Kantorovich spaces. (English) Zbl 1535.37007

Vector-valued versions of ‘zero-two’ laws giving criteria for successive iterates of an operator to converge in norm are proved in the setting of Orlicz-Kantorovich spaces. The history and context for results of this shape is briefly described, and the paper uses the language of Boolean algebras, Riesz spaces, vector integration, lattice-normed spaces, and measurable bundles of Boolean algebras and Banach lattices.

MSC:

37A30 Ergodic theorems, spectral theory, Markov operators
47A35 Ergodic theory of linear operators
46B42 Banach lattices
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46G10 Vector-valued measures and integration
Full Text: DOI

References:

[1] Akcoglu, MA; Sucheston, L., On uniform monotonicity of norms and ergodic theorems in function spaces, Rend. Circ. Mat. Palermo (2) Suppl., 8, 325-335 (1985) · Zbl 0626.46010
[2] Albeverio, S.; Ayupov, ShA; Kudaybergenov, KK, Non commutative Arens algebras and their derivations, J. Funct. Anal., 253, 287-302 (2007) · Zbl 1138.46040 · doi:10.1016/j.jfa.2007.04.010
[3] Arziev, AD; Kudaybergenov, KK; Orinbaev, PR; Tangirbergen, AK, Partial integral operators on Banach-Kantorovich spaces, Math. Notes, 114, 15-29 (2023) · Zbl 1543.47092 · doi:10.1134/S0001434623070027
[4] Bru, B.; Heinich, H., Monotonies des especes d’Orlicz, C. R. Acad. Sci. Paris, 301, 893-894 (1985) · Zbl 0588.60007
[5] Chilin, V.I., Ganiev, I.G.: An individual ergodic theorem for contractions in the Banach-Kantorovich lattice \(L^p(\nabla ,\mu )\). Russ. Math. (Iz. VUZ) 44, 77-79 (2000) · Zbl 1010.46030
[6] Chilin, V.I., Ganiev, I.G.: Ergodic theorems for \(L_1-L_\infty\) contractions in Banach-Kantorovich \(L_p\)-lattices. arXiv:1306.3827 · Zbl 1411.47003
[7] Chilin, V.I., Zakirov, B.S.: Decomposition of the measure with the values in order complete vector lattices. Vladikavkaz. Math. J. 4, 31-38 (2008) (Russian) · Zbl 1324.46055
[8] Erkurşun-Özcan, N.; Mukhamedov, F., An extension of the zero-two law on \(L_p\)-spaces, Isr. J. Math., 254, 461-477 (2023) · Zbl 1525.47025 · doi:10.1007/s11856-022-2423-2
[9] Foguel, SR, On the “zero-two” law, Isr. J. Math., 10, 275-280 (1971) · Zbl 0229.60056 · doi:10.1007/BF02771644
[10] Ganiev, I.G.: Measurable bundles of Banach lattices. Uzb. Math. J. 5, 14-21 (1998) (Russian)
[11] Ganiev, I.G.: The martingales convergence in the Banach-Kantorovich’s lattices \(L_p(\nabla ,\mu )\). Uzb. Math. J. 1, 18-26 (2000) · Zbl 1165.60303
[12] Ganiev, I.G.: Measurable bundles of lattices and their applications. In: Studies on Functional Analysis and Its Applications, pp. 9-49. Nauka, Moscow (2006) (Russian)
[13] Ganiev, I.; Kudaybergenov, K., The Banach-Steinhaus uniform boundedness principle for operators in Banach-Kantorovich spaces over \(L_0\), Sib. Adv. Math., 16, 42-53 (2006) · Zbl 1249.46002
[14] Ganiev, I.; Mukhamedov, F., On the “Zero-Two” law for positive contractions in the Banach-Kantorovich lattice \(L^p(\nabla ,\mu )\), Comment. Math. Univ. Carolinae, 47, 427-436 (2006) · Zbl 1150.37302
[15] Ganiev, I.; Mukhamedov, F., On weighted ergodic theorems for Banach-Kantorovich lattice \(L_p(\nabla ,\mu )\), Lobachevskii J. Math., 34, 1-10 (2013) · Zbl 1316.37002 · doi:10.1134/S1995080212040087
[16] Ganiev, I.; Mukhamedov, F., Weighted ergodic theorem for contractions of Orlicz-Kantorovich lattice \(L_M({\widehat{\nabla }},{\widehat{\mu }})\), Bull. Malays. Math. Sci. Soc., 38, 387-397 (2015) · Zbl 1347.37009 · doi:10.1007/s40840-014-0025-9
[17] Ganiev, I.; Mukhamedov, F., Conditional expectations and martingales in noncommutative \(L_p\)-spaces associated with center-valued traces, Acta Math. Sci., 37, 1019-1032 (2017) · Zbl 1399.46095 · doi:10.1016/S0252-9602(17)30055-3
[18] Ganiev, I.; Mukhamedov, F.; Bekbaev, D., The strong “zero-two” law for positive contractions of Banach-Kantorovich \(L_p\)-lattices, Turk. J. Math., 39, 583-594 (2015) · Zbl 1351.47007 · doi:10.3906/mat-1501-74
[19] Ganiev, I.; Mukhamedov, F.; Bekbaev, D., On a generalized uniform zero-two law for positive contractions of non-commutative \(L_1\)-spaces and its vector-valued extension, Banach J. Math. Anal., 12, 600-616 (2018) · Zbl 1497.46071 · doi:10.1215/17358787-2017-0054
[20] Gierz, G., Bundles of Topological Vector Spaces and their Duality (1982), Berlin: Springer, Berlin · Zbl 0488.46060 · doi:10.1007/BFb0068863
[21] Gutman, AE, Banach bundles in the theory of lattice-normed spaces, III, Sib. Adv. Math., 3, 4, 8-40 (1993) · Zbl 0854.46005
[22] Gutman, A.E.: Banach fiberings in the theory of lattice-normed spaces. Order-compatible linear operators. Trudy Inst. Mat. 29, 63-211 (1995) (Russian) · Zbl 0861.46003
[23] Hudzik, H., Uniform convexity of Musielak-Orlicz spaces with Luxemburg’s norm, Comment. Math., 23, 21-32 (1983) · Zbl 0595.46027
[24] Katznelson, Y.; Tzafriri, L., On power bounded operators, J. Funct. Anal., 68, 313-328 (1986) · Zbl 0611.47005 · doi:10.1016/0022-1236(86)90101-1
[25] Krasnosleskii, M.A., Rutitckii, Ja.B.: Convex Functions and Orlicz Spaces. Groningen (1961) · Zbl 0095.09103
[26] Krengel, U., Ergodic Theorems (1985), Berlin: Walter de Gruyter, Berlin · Zbl 0575.28009 · doi:10.1515/9783110844641
[27] Kreyin, SG; Petunin, YuI; Semyenov, YM, Interpolation of Linear Operators (1982), Providence: American Mathematical Society, Providence · Zbl 0493.46058
[28] Kudayberganov, K.; Mukhamedov, F., Spectral decomposition of self-adjoint cyclically compact operators and partial integral equations, Acta Math. Hung., 149, 297-305 (2016) · Zbl 1399.47074 · doi:10.1007/s10474-016-0619-9
[29] Kurc, W., Strictly and uniformly monotone Musielak-Orlicz spaces and applications to best approximation, J. Appox. Theor., 69, 173-187 (1992) · Zbl 0749.41031 · doi:10.1016/0021-9045(92)90141-A
[30] Kusraev, A.G.: Vector Duality and Its Applications. Nauka, Novosibirsk (1985) (Russian) · Zbl 0616.49010
[31] Kusraev, AG, Dominated Operators (2000), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0983.47025 · doi:10.1007/978-94-015-9349-6
[32] Kusraev, AG; Kutateladze, SS, Introduction to Boolean Valued Analysis (2005), Moscow: Nauka, Moscow · Zbl 1087.03032
[33] Mukhamedov, F., On a multi-parametric generalization of the uniform zero-two law in \(L^1\)-spaces, Bull. Korean Math. Soc., 52, 1819-1826 (2015) · Zbl 1331.47059 · doi:10.4134/BKMS.2015.52.6.1819
[34] Mukhamedov, F., On dominant contractions and a generalization of the zero-two law, Positivity, 15, 497-508 (2011) · Zbl 1231.47034 · doi:10.1007/s11117-010-0102-8
[35] Ornstein, D.; Sucheston, L., An operator theorem on \(L_1\) convergence to zero with applications to Markov kernels, Ann. Math. Stat., 41, 1631-1639 (1970) · Zbl 0284.60068 · doi:10.1214/aoms/1177696806
[36] von Neumann, J., On rings of operators III, Ann. Math., 41, 94-161 (1940) · JFM 66.0547.01 · doi:10.2307/1968823
[37] Vulih, BZ, Introduction to Theory of Partially Ordered Spaces (1967), Groningen: Wolters-Noordhoff, Groningen · Zbl 0186.44601
[38] Wittmann, R., Ein starkes “Null-Zwei” Gesetz in \(L_p\), Math. Z., 197, 223-229 (1988) · Zbl 0641.46012 · doi:10.1007/BF01215191
[39] Zaharopol, R., The modulus of a regular linear operators and the “zero-two” law in \(L_p\)-spaces \((1<p<\infty , p\ne 2)\), J. Funct. Anal., 68, 300-312 (1986) · Zbl 0613.47038 · doi:10.1016/0022-1236(86)90100-X
[40] Zaharopol, R., Uniform monotonicity of norms and the strong “zero-two” law, J. Math. Anal. Appl., 139, 217-225 (1989) · Zbl 0688.47014 · doi:10.1016/0022-247X(89)90240-0
[41] Zakirov, BS, The Luxemburg norm in an Orlicz-Kantorovich lattice, Uzb. Mat. J., 2, 32-44 (2007) · Zbl 1190.46022
[42] Zakirov, BS; Chilin, VI, Ergodic theorems for contractions in Orlicz-Kantorovich lattices, Sib. Math. J., 50, 1027-1037 (2009) · Zbl 1217.47022 · doi:10.1007/s11202-009-0113-5
[43] Zakirov, BS; Chilin, VI, Positive isometries of Orlicz-Kantorovich spaces, Vladikavkaz Math. J., 25, 103-116 (2023) · Zbl 1538.46014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.