×

Towards a simultaneous Skorohod theorem. (Vers un théorème de skorohod simultané.) (French) Zbl 1161.60004

The classical representation theorem of Skorohod states that if a sequence \(\mathbf Q_n\) of countably additive probabilities on a Polish space converges in weak*-topology then, on a standard probability space, there exist \(\mathbf Q_n-\)distributed \(f_n\) which converge almost surely. In this paper the author formulates and studies this theorem for vector measures with values in \(R^d.\) An application is made to the following Monge problem: if \(|\mathbf P |\) is the variation of the vector measure \(\mathbf P, (\mathbf P, \mathbf Q)\) be a couple, and \(c\) is a cost function, a function \(\phi\) exists such that \(\phi(\mathbf P) = \mathbf Q\) and \(E_{| \mathbf P|} c(x, \phi(x)\) = inf \(\{E_{(X, Y)( \mathbf P)} (c)\), \(X(\mathbf P) = \mathbf P, Y(\mathbf P) = \mathbf Q\}\). It is shown that such a function exists for a quadratic cost.

MSC:

60B10 Convergence of probability measures
49Q20 Variational problems in a geometric measure-theoretic setting

References:

[1] Arcudi (O.).— Convergence of conditional expectations given the radom variables of a Skorohod representation. Statistics & Probability Letters, 40, p. 1-8 (1998). · Zbl 0957.60003
[2] Billingsley (P.).— Probability and Measure. Wiley, New York (1986). · Zbl 0649.60001
[3] Birkhoff (G.).— Lattice theory. AMS Colloquim publ., 25 (1979). · Zbl 0505.06001
[4] Blackwell (D.), Dubins (L.E.).— An extension of Skorohod’s almost sure representation theorem. Proc. Amer. Math. Soc., 89, p. 691-692 (1983). · Zbl 0542.60005
[5] Bourbaki (N.).— Éléments de Mathématiques. Livres V et VI. Hermann (1983).
[6] Ballve (M. E.), Jimenez Guerra (P.), Muñoz (N. J.).— The Mass-Transfert Vector Problem. Applied Mathematics Letters, 13, p. 37-44 (2000). · Zbl 0959.28010
[7] Belili (N.), Heinich (H.).— Mass transport problem and derivation. Appl. Mathematicae.23, 3, p. 299-314 (1999). · Zbl 0998.60012
[8] Belili (N.), Heinich (H.).— Approximation of distributions. Statistics & Probability Letters, 76, p. 298-303 (2006). · Zbl 1090.60010
[9] Brenier (Y.).— Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris, Série I, 305, p. 329-343 (1987). · Zbl 0652.26017
[10] Cuesta-Albertos (J. A.), Matrán (C.), Rachev (S.T.), Rüschendorf (L.).— Mass transportation problems in probability theory. Math. Scientist, 21, p. 34-72 (1996). · Zbl 0860.60083
[11] Dellacherie (C.), Meyer (P.A).— Probabilités et potentiel. Herman, Paris (1983). · Zbl 0323.60039
[12] Diestel (J.), Uhl (J. J.).— Vector measures. A. M. S. Surveys 15 (1977). · Zbl 0369.46039
[13] Dinculeanu (N.).— Vector measures. Pergamon Press (1967).
[14] Dudley (R. M.).— Distances of probability-measures and random variables. Ann. Math. Stat., 39, p. 1563-1572 (1968). · Zbl 0169.20602
[15] Gangbo (W.), McCann (R. J.).— The geometry of optimal transportation. Acta. Math., 177, p. 113-161 (1996). · Zbl 0887.49017
[16] Heinich (H.), Lootgieter (J.-C.).— Convergence des fonctions monotones. C. R. Acad. Sci. Paris, Série 1, 322, 869-874 (1996). · Zbl 0849.60027
[17] Heinich (H.).— The Monge Problem in Banach spaces. Journal of Theoretical Probability.19, p. 509-534 (2006). · Zbl 1120.49041
[18] Knott (M.), Smith (C. S.).— On a generalization of cyclic monotonicity and distances among random vectors. Linear Algebra Appl., 199, p. 367-371 (1994). · Zbl 0796.60022
[19] Lehman (E. L.).— Testing Statistical Hypotheses. Wiley, New-York (1959). · Zbl 0089.14102
[20] Major (P.).— On the Invariance Principe for sums of I.I.D. random variables. Journal of Multivariate Analysis,8, p. 487-517 (1978). · Zbl 0408.60028
[21] Monge (G.).— Mémoire sur la théorie des déblais et des remblais. Histoires de l’Académie Royale des Sciences de Paris, avec les mémoires de Mathématiques et de Physique, p. 257-263 (1781).
[22] Rachev (S. T.), Rüschendorf (L.).— Mass transportation problems. Springer, New York (1998). · Zbl 0990.60500
[23] Rockafellar (R. T.).— Convex Analysis. Princeton University Press (1972). · Zbl 0193.18401
[24] Rüschendorf (L.).— Fréchet-bounds and their applications. Advances in Proba-bility Measures with given marginals. Eds G. Dall’Aglio, S. Kotz and G. Salinetti. Kluwer Acad. Publ. p. 151-188 (1991). · Zbl 0744.60005
[25] Skorohod( A.V.).— Limit theorems for stochastic processes. Theory Probab. Appl.,1, p. 261-290 (1956). · Zbl 0969.60007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.