×

Computation of conditional expectations with guarantees. (English) Zbl 07698853

Summary: Theoretically, the conditional expectation of a square-integrable random variable \(Y\) given a \(d\)-dimensional random vector \(X\) can be obtained by minimizing the mean squared distance between \(Y\) and \(f(X)\) over all Borel measurable functions \(f :\mathbb{R}^d \rightarrow \mathbb{R}\). However, in many applications this minimization problem cannot be solved exactly, and instead, a numerical method which computes an approximate minimum over a suitable subfamily of Borel functions has to be used. The quality of the result depends on the adequacy of the subfamily and the performance of the numerical method. In this paper, we derive an expected value representation of the minimal mean squared distance which in many applications can efficiently be approximated with a standard Monte Carlo average. This enables us to provide guarantees for the accuracy of any numerical approximation of a given conditional expectation. We illustrate the method by assessing the quality of approximate conditional expectations obtained by linear, polynomial and neural network regression in different concrete examples.

MSC:

62J02 General nonlinear regression
65G99 Error analysis and interval analysis
65C05 Monte Carlo methods
65C20 Probabilistic models, generic numerical methods in probability and statistics
68T05 Learning and adaptive systems in artificial intelligence

References:

[1] Acerbi, C.; Tasche, D., On the coherence of expected shortfall, J. Bank. Financ., 26, 1487-1503 (2002) · doi:10.1016/S0378-4266(02)00283-2
[2] Åström, K.J.: Introduction to Stochastic Control Theory. Mathematics in Science and Engineering, vol. 70. Academic Press, New York, London (1970) · Zbl 0226.93027
[3] Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering, vol. 60. Springer (2008) · Zbl 1176.62091
[4] Bally, V.: Approximation scheme for solutions of BSDE. In: Pitman Research Notes in Mathematics Series, vol. 364. Longman (1997) · Zbl 0889.60068
[5] Bauer, D.; Reuss, A.; Singer, D., On the calculation of the solvency capital requirement based on nested simulations, ASTIN Bull., 42, 453-499 (2012) · Zbl 1277.91074
[6] Beck, C., Becker, S., Cheridito, P., Jentzen, A., Neufeld, A.: Deep learning based numerical approximation algorithms for stochastic partial differential equations and high-dimensional nonlinear filtering problems. arXiv:2012.01194 (2020)
[7] Beck, C.; Becker, S.; Cheridito, P.; Jentzen, A.; Neufeld, A., Deep splitting method for parabolic PDEs, SIAM J. Sci. Comput., 43, 5, A3135-A3154 (2021) · Zbl 1501.65054 · doi:10.1137/19M1297919
[8] Becker, S., Cheridito, P., Jentzen, A.: Pricing and hedging American-style options with deep learning. J. Risk Financ. Manag. 13(7), 158, 1-12 (2020)
[9] Björck, Å., Numerical Methods for Least Squares Problems (1996), Philadelphia: SIAM, Philadelphia · Zbl 0847.65023 · doi:10.1137/1.9781611971484
[10] Bouchard, B.; Touzi, N., Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations, Stoch. Process. Appl., 11, 2, 175-206 (2004) · Zbl 1071.60059 · doi:10.1016/j.spa.2004.01.001
[11] Broadie, M.; Cao, M., Improved lower and upper bound algorithms for pricing American options by simulation, Quant. Finance, 8, 845-861 (2008) · Zbl 1154.91430 · doi:10.1080/14697680701763086
[12] Broadie, M.; Glasserman, P., A stochastic mesh method for pricing high-dimensional American options, J. Comput. Financ., 7, 35-72 (2004) · doi:10.21314/JCF.2004.117
[13] Broadie, M.; Yiping, D.; Moallemi, CC, Efficient risk estimation via nested sequential simulation, Manage. Sci., 57, 1172-1194 (2011) · Zbl 1218.91170 · doi:10.1287/mnsc.1110.1330
[14] Broadie, M.; Yiping, D.; Moallemi, CC, Risk estimation via regression, Oper. Res., 63, 1077-1097 (2015) · Zbl 1347.91235 · doi:10.1287/opre.2015.1419
[15] Bru, B.; Heinich, H., Meilleures approximations et médianes conditionnelles, Ann. l’IHP Probab. Stat., 21, 197-224 (1985) · Zbl 0576.41018
[16] Carriere, JF, Valuation of the early-exercise price for options using simulations and nonparametric regression, Insurance Math. Econom., 19, 19-30 (1996) · Zbl 0894.62109 · doi:10.1016/S0167-6687(96)00004-2
[17] Chatterjee, S., Hadi, A.S.: Regression Analysis by Example. Wiley (2015) · Zbl 1263.62099
[18] Cheridito, P., Ery, J., Wüthrich, M.V.: Assessing asset-liability risk with neural networks. Risks 8(1), 16, 1-17 (2020)
[19] Chevance, D.: Numerical methods for backward SDEs. In: Numerical Methods in Finance, vol. 232 (1997) · Zbl 0898.90031
[20] Draper, N.R., Smith, H.: Applied Regression Analysis. Wiley, New York (1998) · Zbl 0895.62073
[21] Fahim, A.; Touzi, N.; Warin, X., A probabilistic numerical method for fully nonlinear parabolic PDEs, Ann. Appl. Probab., 21, 4, 1322-1364 (2011) · Zbl 1230.65009 · doi:10.1214/10-AAP723
[22] Föllmer, H., Schied, A.: Stochastic Finance. De Gruyter Textbook (2016) · Zbl 1343.91001
[23] Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. CRC Press (2013)
[24] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 249-256 (2010)
[25] Gobet, E.; Turkedjiev, P., Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions, Math. Comput., 85, 1359-1391 (2006) · Zbl 1344.60067 · doi:10.1090/mcom/3013
[26] Gobet, E.; Lemor, J-P; Warin, X., A regression-based Monte Carlo method to solve backward SDEs, Ann. Appl. Probab., 15, 2172-2202 (2005) · Zbl 1083.60047 · doi:10.1214/105051605000000412
[27] Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning (2016), Cambridge: MIT Press, Cambridge · Zbl 1373.68009
[28] Gordy, MB; Juneja, S., Nested simulation in portfolio risk measurement, Manage. Sci., 56, 1833-1848 (2010) · Zbl 1232.91622 · doi:10.1287/mnsc.1100.1213
[29] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer (2009) · Zbl 1273.62005
[30] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 448-456 (2015)
[31] Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Courier Corporation (2007) · Zbl 1203.60001
[32] Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer (1998) · Zbl 0941.91032
[33] Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)
[34] Lee, S-H; Glynn, PW, Computing the distribution function of a conditional expectation via Monte Carlo: discrete conditioning spaces, ACM Trans. Model. Comput. Simul., 13, 238-258 (2003) · Zbl 1390.65005 · doi:10.1145/937332.937334
[35] Longstaff, FA; Schwartz, ES, Valuing American options by simulation: a simple least-squares approach, Rev. Financ. Stud., 14, 113-147 (2001) · Zbl 1386.91144 · doi:10.1093/rfs/14.1.113
[36] Ryan,T.P.: Modern regression methods. Wiley Series in Probability and Statistics, 2nd edn. Wiley, Hoboken (2009) · Zbl 1166.62049
[37] Tsitsiklis, JN; Van Roy, B., Regression methods for pricing complex American-style options, IEEE Trans. Neural Netw., 12, 694-703 (2001) · doi:10.1109/72.935083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.