×

Some Bonnesen-style inequalities for higher dimensions. (English) Zbl 1272.52006

The authors consider the higher dimensional Bonnesen-style inequalities. They prove the following: If \(K\) is a domain in the Euclidean space \(\mathbb{R}^n\) with surface area \(S\) and volume \(V\) and \(K^{*}\) is the convex hull of \(K\) of the surface area \(S^{*}\) and volume \(V^{*}\), then for \(S\geq S^{*}\) \[ S^n-n^n \omega_nV^{n-1} \geq (S-S^{*})^n \quad\text{ and }\quad S^n-n^n \omega_nV^{n-1} \geq C \omega_n (V^{*}-V)^{n-1}, \] where \(C\) is a constant and \(\omega_n\) is the volume of the unit ball of \(\mathbb{R}^n\). Each equality holds when \(K\) is an \(n\)-ball.

MSC:

52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
52A40 Inequalities and extremum problems involving convexity in convex geometry
Full Text: DOI

References:

[1] Banchoff, T., Pohl, W.: A generalization of the isoperimetric inequality. J. Diff. Geom., 6, 175–213 (1971) · Zbl 0227.53040
[2] Bonnesen, T.: Les probléms des isopérimétres et des isépiphanes, Gauthier-Villars, Paris, 1929 · JFM 55.0431.08
[3] Bonnesen, T., Fenchel, W.: Theory of convex bodies. Translated from the German and edited by L. Boron, C. Christenson and B. Smith. BCS Associates, Moscow, ID, 1987 · Zbl 0628.52001
[4] Burago, Yu., Zalgaller, V.: Geometric Inequalities, Springer-Verlag Berlin, Heidelberg, 1988 · Zbl 0633.53002
[5] Croke, C.: A sharp four-dimensional isoperimetric inequality. Comment. Math. Helv., 59(2), 187–192 (1984) · Zbl 0552.53017 · doi:10.1007/BF02566344
[6] Diskant, V.: A generalization of Bonnesen’s inequalities. Soviet Math. Dokl., 14, 1728–1731 (1973) (Transl. of Dokl. Akad. Nauk SSSR, 213 (1973)) · Zbl 0298.52009
[7] Enomoto, K.: A generalization of the isoperimetric inequality on S 2 and flat tori in S 3. Proc. Amer. Math. Soc., 120(2), 553–558 (1994) · Zbl 0798.53068
[8] Grinberg, E., Ren, D., Zhou, J.: The symetric isoperimetric deficit and the containment problem in a plan of constant curvature. Submitted in Frontiers of Mathematics in China
[9] Grinberg, E., Li, S., Zhang, G., et al.: Integral Geometry and Convexity, Proceedings of the International Conference, World Scientific, Singapore, 2006 · Zbl 1109.52001
[10] Gysin, L.: The isoperimetric inequality for nonsimple closed curves. Proc. Amer. Math. Soc., 118(1), 197–203 (1993) · Zbl 0791.53017 · doi:10.1090/S0002-9939-1993-1079698-X
[11] Hardy, G., Littlewood, J., Polya, G.: Inequalities, Cambradge Univ. Press, Cambradge-New York, 1951
[12] Hsiung, C. C.: Isoperimetric inequalities for two-dimensional Riemannian manifolds with boundary. Ann. of Math. (2), 73, 213–220 (1961) · Zbl 0105.16301 · doi:10.2307/1970287
[13] Hsiung, W. Y.: An elementary proof of the isoperimetric problem. Chin. Ann. Math., Ser. A, 23(1), 7–12 (2002) · Zbl 0998.51012
[14] Klain, D.: Bonnesen-type inequalities for surfaces of constant curvature. Adv. Appl. Math., 39(2), 143–154 (2007) · Zbl 1157.53039 · doi:10.1016/j.aam.2006.11.004
[15] Klain, D.: An error estimate for the isoperimetric deficit. Illinois J. Math., 49(3), 981–992 (2005) · Zbl 1089.52007
[16] Ku, H., Ku, M., Zhang, X.: Isoperimetric inequalities on surfaces of constant curvature. Canadian J. Math., 49, 1162–1187 (1997) · Zbl 0906.52002 · doi:10.4153/CJM-1997-057-x
[17] Li, M., Zhou, J.: An upper limit for the isoperimetric deficit of convex set in a plane of constant curvature. Science China Mathematics, 53(8), 1941–1946 (2010) · Zbl 1209.52004 · doi:10.1007/s11425-010-4018-3
[18] Lutwak, E., Yang, D., Zhang, G.: Sharp affine L p Sobolev inequality. J. Diff. Geom., 62, 17–38 (2002) · Zbl 1073.46027
[19] Osserman, R.: The isoperimetric inequality. Bull. Amer. Math. Soc., 84, 1182–1238 (1978) · Zbl 0411.52006 · doi:10.1090/S0002-9904-1978-14553-4
[20] Osserman, R.: Bonnesen-style isoperimetric inequality. Amer. Math. Monthly, 86, 1–29 (1979) · Zbl 0404.52012 · doi:10.2307/2320297
[21] Polya, G., Szego, G.: Isoperimetric inequalities in mathematical physics. Ann. of Math. Studies, No. 27, Princeton Univ., Princeton, 1951
[22] Ren, D.: Topics in Integral Geometry, World Scientific, Singapore, 1994 · Zbl 0842.53001
[23] Santaló, L.: Integral Geometry and Geometric Probability, Reading, MA, Addison-Wesley, 1976 · Zbl 0342.53049
[24] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, Cambridge, 1993 · Zbl 0798.52001
[25] Stone, A.: On the isoperimetric inequality on a minimal surface. Calc. Var. Partial Diff. Equations, 17(4), 369–391 (2003) · Zbl 1035.53019 · doi:10.1007/s00526-002-0174-9
[26] Tang, D.: Discrete Wirtinger and isoperimetric type inequalities. Bull. Austral. Math. Soc., 43, 467–474 (1991) · Zbl 0751.26006 · doi:10.1017/S0004972700029312
[27] Teufel, E.: A generalization of the isoperimetric inequality in the hyperbolic plane. Arch. Math., 57(5), 508–513 (1991) · Zbl 0783.53042 · doi:10.1007/BF01246751
[28] Teufel, E.: Isoperimetric inequalities for closed curves in spaces of constant curvature. Results Math., 22, 622–630 (1992) · Zbl 0762.53045 · doi:10.1007/BF03323109
[29] Wei, S., Zhu, M.: Sharp isoperimetric inequalities and sphere theorems. Pacific J. Math., 220(1), 183–195 (2005) · Zbl 1095.58004 · doi:10.2140/pjm.2005.220.183
[30] Weiner, J.: A generalization of the isoperimetric inequality on the 2-sphere. Indiana Univ. Math. J., 24, 243–248 (1974) · Zbl 0292.53046 · doi:10.1512/iumj.1975.24.24021
[31] Weiner, J.: Isoperimetric inequalities for immersed closed spherical curves. Proc. Amer. Math. Soc., 120(2), 501–506 (1994) · Zbl 0792.49008 · doi:10.1090/S0002-9939-1994-1163337-4
[32] Yau, S.: Isoperimetric constants and the first eigenvalue of a compact manifold. Ann. Sci. Ec. Norm. Super., Paris (4), 8, 487–507 (1975) · Zbl 0325.53039
[33] Zhang, G.: The affine Sobolev inequality. J. Diff. Geom., 53, 183–202 (1999) · Zbl 1040.53089
[34] Zhang, G.: Geometric inequalities and inclusion measures of convex bodies. Mathematika, 41, 95–116 (1994) · Zbl 0803.52006 · doi:10.1112/S0025579300007208
[35] Zhang, G., Zhou, J.: Containment measures in integral geometry. Integral Geometry and Convexity, World Scientific, Singapore, 2006, 153–168 · Zbl 1181.52010
[36] Zhang, X.-M.: Bonnesen-style inequalities and Pseudo-perimeters for polygons. J. Geom., 60, 188–201 (1997) · Zbl 0890.51017 · doi:10.1007/BF01252226
[37] Zhang, X.-M.: Schur-convex functions and isoperimetric inequalities. Proc. Amer. Math. Soc., 126(2), 461–470 (1998) · Zbl 0908.26009 · doi:10.1090/S0002-9939-98-04151-3
[38] Zhou, J.: A kinematic formula and analogous of Hadwiger’s theorem in space. Contemporary Mathematics 140, 1992, 159–167 · Zbl 0789.52010 · doi:10.1090/conm/140/1197595
[39] Zhou, J.: The sufficient condition for a convex domain to contain another in \(\mathbb{R}\)4. Proc. Amer. Math. Soc., 121, 907–913 (1994) · Zbl 0806.52007
[40] Zhou, J.: Kinematic formulas for mean curvature powers of hypersurfaces and Hadwiger’s theorem in \(\mathbb{R}\)2n . Trans. Amer. Math. Soc., 345, 243–262 (1994) · Zbl 0816.53040
[41] Zhou, J.: When can one domain enclose another in \(\mathbb{R}\)3? J. Austral. Math. Soc. Ser. A, 59, 266–272 (1995) · Zbl 0847.53047 · doi:10.1017/S1446788700038660
[42] Zhou, J.: Sufficient conditions for one domain to contain another in a space of constant curvature. Proc. Amer. Math. Soc., 126, 2797–2803 (1998) · Zbl 0918.53025 · doi:10.1090/S0002-9939-98-04369-X
[43] Zhou, J.: On Willmore’s inequality for submanifolds. Canadian Mathematical Bulletin, 50(3), 474–480 (2007) · Zbl 1141.53074 · doi:10.4153/CMB-2007-047-4
[44] Zhou, J.: On the Willmore deficit of convex surfaces. Lectures in Applied Mathematics of Amer. Math. Soc. 30, 1994, 279–287 · Zbl 0814.52001
[45] Zhou, J., Chen, F.: The Bonnesen-type inequalities in a plane of constant curvature. Journal of Korean Math. Soc., 44(6), 1363–1372 (2007) · Zbl 1141.53075 · doi:10.4134/JKMS.2007.44.6.1363
[46] Zhou, J.: The Willmore functional and the containment problem in \(\mathbb{R}\)4. Sci. China, Ser. A, 50(3), 325–333 (2007) · Zbl 1118.52010 · doi:10.1007/s11425-007-0029-0
[47] Zhou, J.: Plan Bonnesen-type inequalities. Acta Mathematica Sinica, Chinese Series, 50(6), 1397–1402 (2007) · Zbl 1141.52303
[48] Bokowski, J., Heil, E.: Integral representation of quermassintegrals and Bonnesen-style inequalities. Arch. Math., 47, 79–89 (1986) · Zbl 0576.52005 · doi:10.1007/BF01202503
[49] Bottema, O.: Eine obere Grenze für das isoperimetrische Defizit ebener Kurven. Nederl. Akad. Wetensch. Proc., A66, 442–446 (1933) · JFM 59.0714.01
[50] Grinberg, E.: Isoperimetric inequalities and identities for k-dimensional cross-sections of convex bodies. Math. Ann., 291, 75–86 (1991) · Zbl 0725.52006 · doi:10.1007/BF01445191
[51] Hadwiger, H.: Die isoperimetrische Ungleichung in Raum. Elemente Math., 3, 25–38 (1948) · Zbl 0029.32003
[52] Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin, 1957 · Zbl 0078.35703
[53] Zhou, J., Xia, Y., Zeng, C.: Some new Bonnesen-style inequalities. J. Korean Math. Soc., 48(2), 421–430 (2011) · Zbl 1213.52007 · doi:10.4134/JKMS.2011.48.2.421
[54] Zeng, C., Zhou, J., Yue, S.: The symmetric mixed isoperimetric inequality of two planar convex domains. Acta Mathematica Sinica, Chinese Series, 55(2), 355–362 (2012) · Zbl 1265.52003
[55] Zhou, J., Ren D.: Geometric inequalities from the viewpoint of integral geometry. Acta Math. Sci. (Ser. A), 30(5), 1322–1339 (2010) · Zbl 1240.51017
[56] Howard, R.: The sharp Sobolev inequality and the Banchoff-Pohl inequality on surfaces. Proc. Amer. Math. Soc., 126, 2779–2787 (1998) · Zbl 0902.53048 · doi:10.1090/S0002-9939-98-04336-6
[57] Pleijel, A.: On konvexa kurvor. Nordisk Math. Tidskr., 3, 57–64 (1955) · Zbl 0068.36602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.