×

A sausage body is a unique solution for a reverse isoperimetric problem. (English) Zbl 1421.52008

Summary: We consider the class of \(\lambda\)-concave bodies in \(\mathbb{R}^{n + 1}\); that is, convex bodies with the property that each of their boundary points supports a tangent ball of radius \(1 / \lambda\) that lies locally (around the boundary point) inside the body. In this class we solve a reverse isoperimetric problem: we show that the convex hull of two balls of radius \(1 / \lambda\) (a sausage body) is a unique volume minimizer among all \(\lambda\)-concave bodies of given surface area. This is in a surprising contrast to the standard isoperimetric problem for which, as it is well-known, the unique maximizer is a ball. We solve the reverse isoperimetric problem by proving a reverse quermassintegral inequality, the second main result of this paper.

MSC:

52A30 Variants of convex sets (star-shaped, (\(m, n\))-convex, etc.)
52A38 Length, area, volume and convex sets (aspects of convex geometry)
53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces
52A39 Mixed volumes and related topics in convex geometry
52A40 Inequalities and extremum problems involving convexity in convex geometry
52B60 Isoperimetric problems for polytopes

References:

[1] Ball, K., Volume ratios and a reverse isoperimetric inequality, J. Lond. Math. Soc., 44, 351-359 (1991) · Zbl 0694.46010
[2] Ball, K. M., Volumes of sections of cubes and related problems, (Lindenstrauss, J.; Milman, V. D., Israel Seminar on Geometric Aspects of Functional Analysis. Israel Seminar on Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics, vol. 1376 (1989), Springer-Verlag) · Zbl 0674.46008
[3] Barthe, F., On a reverse form of the Brascamp-Lieb inequality, Invent. Math., 134, 335-361 (1998) · Zbl 0901.26010
[4] Bezdek, K.; Lángi, Z.; Naszódi, M.; Papez, P., Ball-polyhedra, Discrete Comput. Geom., 38, 2, 201-230 (2007) · Zbl 1133.52001
[5] Blaschke, W., Kreis und Kugel (1956), de Gruyter: de Gruyter Berlin · JFM 45.0622.02
[6] Bokowski, J., Eine verschärfte Ungleichung zwischen Volumen, Oberfläche und Inkugelradius im R, Elem. Math., 28, 32-44 (1973) · Zbl 0251.52015
[7] Bokowski, J.; Heil, E., Integral representations of quermassintegrals and Bonnesen-style inequalities, Arch. Math., 47, 79-89 (1986) · Zbl 0576.52005
[8] Borisenko, A., Convex sets in Hadamard manifolds, Differential Geom. Appl., 17, 111-121 (2002) · Zbl 1034.53056
[9] Borisenko, A., Reverse isoperimetric inequality in two-dimensional Alexandrov spaces, Proc. Amer. Math. Soc., 145, 4465-4471 (2017) · Zbl 1381.53128
[10] Borisenko, A.; Drach, K., Closeness to spheres of hypersurfaces with normal curvature bounded below, Sb. Math., 204, 11, 1565-1583 (2013) · Zbl 1291.53066
[11] Borisenko, A.; Drach, K., Isoperimetric inequality for curves with curvature bounded below, Math. Notes, 95, 5, 590-598 (2014) · Zbl 1318.53003
[12] Borisenko, A.; Drach, K., Extreme properties of curves with bounded curvature on a sphere, J. Dyn. Control Syst., 21, 3, 311-327 (2015) · Zbl 1321.53064
[13] Borisenko, A.; Gallego, E.; Reventós, A., Relation between area and volume for \(λ\)-convex sets in Hadamard manifolds, Differential Geom. Appl., 14, 3, 267-280 (2001) · Zbl 0981.52006
[14] Borisenko, A.; Miquel, V., Total curvatures of convex hypersurfaces in hyperbolic space, Illinois J. Math., 43, 1, 61-78 (1999) · Zbl 0981.53046
[15] Brooks, J. N.; Strantzen, J. B., Blaschke’s rolling theorem in \(R^n\), Mem. Amer. Math. Soc., 80, 405 (1989) · Zbl 0678.52001
[16] Burago, Y. D.; Zalgaller, V. A., Geometric Inequalities (1988), Springer-Verlag: Springer-Verlag Berlin · Zbl 0633.53002
[17] Chernov, R., Extreme Problems for Curves and Surfaces of Bounded Curvature (2016), V. N. Karazin Kharkiv National University: V. N. Karazin Kharkiv National University Kharkiv, (in Russian)
[18] Diskant, V. I., A generalization of Bonnesen’s inequalities, Sov. Math., Dokl.. Sov. Math., Dokl., Dokl. Akad. Nauk SSSR, 213, 6, 519-521 (1973), translation of · Zbl 0298.52009
[19] Drach, K., About the isoperimetric property of \(λ\)-convex lunes on the Lobachevsky plane, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky, 11, 11-15 (2014), in Russian; English translation: · Zbl 1313.53059
[20] Drach, K., Extreme Bounds for Complete Hypersurfaces in Riemannian Spaces (2016), B. Verkin Institute for Low Temperature Physics and Engineering of the NAS of Ukraine: B. Verkin Institute for Low Temperature Physics and Engineering of the NAS of Ukraine Kharkiv, (in Russian)
[21] Drach, K., On a solution of the reverse Dido problem in a class of convex surfaces of revolution, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 4, 7-12 (2016) · Zbl 1363.53004
[22] K. Drach, Reverse isoperimetric inequality for \(λ\); K. Drach, Reverse isoperimetric inequality for \(λ\)
[23] Fodor, F.; Kurusa, A.; Vígh, V., Inequalities for hyperconvex sets, Adv. Geom., 16, 3, 337-348 (2016) · Zbl 1386.52005
[24] Gard, A., Reverse Isoperimetric Inequalities in \(R^3 (2012)\), The Ohio State University: The Ohio State University Columbus, PhD Thesis
[25] Herz, B., Über die Willssche Verallgemeinerung einer Ungleichung von Bonnesen, Monatsh. Math., 75, 316-319 (1971) · Zbl 0223.52011
[26] Howard, R.; Treibergs, A., A reverse isoperimetric inequality, stability and extremal theorems for plane curves with bounded curvature, Rocky Mountain J. Math., 25, 2, 635-684 (1995) · Zbl 0909.53002
[27] Milka, A. D., A certain theorem of Schur-Schmidt, Ukr. Geom. Sb. Vyp., 8, 95-102 (1970), (in Russian) · Zbl 0216.18204
[28] Pan, S. L.; Zhang, H., A reverse isoperimetric inequality for convex plane curves, Beitr. Algebra Geom., 48, 303-308 (2007) · Zbl 1121.52023
[29] Ros, A., The isoperimetric problem, (Global Theory of Minimal Surfaces. Global Theory of Minimal Surfaces, Clay Math. Proc., vol. 2 (2005), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 175-209 · Zbl 1125.49034
[30] Sangwine-Yager, J. R., Bonnesen-style inequalities for Minkowski relative geometry, Trans. Amer. Math. Soc., 307, 1, 373-382 (1988) · Zbl 0652.52010
[31] Schneider, R., Convex Bodies: The Brunn-Minkowski Theory (2014), Cambridge Press · Zbl 1287.52001
[32] Wills, J. M., Zum Verhaltnis von Volumen zur Oberfläche bei konvexen Körpern, Arch. Math., 21, 557-560 (1970) · Zbl 0204.55204
[33] Xia, Y.; Xu, W.; Zhou, J.; Zhu, B., Reverse Bonnesen style inequalities in a surface \(X_\varepsilon^2\) of constant curvature, Sci. China Math., 56, 1145-1154 (2013) · Zbl 1306.52002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.