×

Contrast reconstruction of overfilled cavities by incorporating multi-frequency scattering fields and attention mechanism into two-step learning method. (English) Zbl 07892944

MSC:

78-XX Optics, electromagnetic theory
76-XX Fluid mechanics

Software:

SegNet
Full Text: DOI

References:

[1] Huang, H.; Pan, M.; Lu, Z., Hardware-in-the-loop simulation technology of wide-band radar targets based on scattering center model, Chin J Aeronaut, 28, 1476-1484, 2015
[2] Hong, L.; Dai, F.; Wang, X., Knowledge-based wideband radar target detection in the heterogeneous environment, Signal Process, 144, 169-179, 2018
[3] Liu, Q.; Zhang, X.; Liu, Y., SCNet: Scattering center neural network for radar target recognition with incomplete target-aspects, Signal Process, 219, Article 109409 pp., 2024
[4] Zdunek, R., On image reconstruction algorithms for binary electromagnetic geotomography, Theoret Comput Sci, 406, 160-170, 2008 · Zbl 1167.68461
[5] Lin, J.; Chen, J.; Zhang, Y., Rapid and high-resolution detection of urban underground space using transient electromagnetic method, IEEE Trans Ind Inf, 18, 2622-2631, 2022
[6] Liu, Y.; Na, X.; Yin, C.; Su, Y.; Sun, S.; Zhang, B., 3-D joint inversion of airborne electromagnetic and magnetic data based on local pearson correlation constraints, IEEE Trans Geosci Remote Sens, 60, 1-13, 2022
[7] Wood, A., Analysis of electromagnetic scattering from an overfilled cavity in the ground plane, J Comput Phys, 215, 630-641, 2006 · Zbl 1100.78014
[8] Du, K., Two transparent boundary conditions for the electromagnetic scattering from two-dimensional overfilled cavities, J Comput Phys, 230, 5822-5835, 2011 · Zbl 1220.78044
[9] Bürgel, F.; Kazimierski, K.; Lechleiter, A., A sparsity regularization and total variation based computational framework for the inverse medium problem in scattering, J Comput Phys, 339, 1-30, 2017 · Zbl 1375.78025
[10] Nair, S.; Walsh, T.; Pickrell, G.; Semperlotti, F., GRIDS-Net: Inverse shape design and identification of scatterers via geometric regularization and physics-embedded deep learning, Comput Methods Appl Mech Engrg, 414, Article 116167 pp., 2023 · Zbl 1539.74556
[11] Zhou, W.; Liu, A.; Wu, L.; Chen, X., A \(L_1\) normalization enhanced dynamic window method for SSVEP-based BCIs, J Neurosci Methods, 380, Article 109688 pp., 2022
[12] Ren J, Lu X, Guan J, Yin Z, Chen W. Fast high-resolution 3D radar imaging based on 3D FISTA. In: 2017 IEEE Radar conference. 2017, p. 815-8.
[13] Su, H.; Xu, F.; Lu, S.; Jin, Y., Iterative ADMM for inverse FE-BI problem: A potential solution to radio tomography of asteroids, IEEE Trans Geosci Remote Sens, 54, 5226-5238, 2016
[14] Brignone, M.; Coyle, J.; Piana, M., The use of the linear sampling method for obtaining super-resolution effects in Born approximation, J Comput Appl Math, 203, 145-158, 2007 · Zbl 1121.78007
[15] Köhn, A.; Guidi, L.; Holzhauer, E.; Maj, O.; Poli, E.; Snicker, A., Microwave beam broadening due to turbulent plasma density fluctuations within the limit of the Born approximation and beyond, Plasma Phys Control Fusion, 60, Article 075006 pp., 2018
[16] Vouldis, A.; Nikita, K.; Uzunoglu, N., An inverse scattering algorithm using the Rytov approximation for a transient three-dimensional problem, Nucl Instrum Methods Phys Res A, 569, 587-590, 2006
[17] Wang, W.; Wu, Z.; Shang, Q.; Lu, B., Propagation of Bessel Gaussian beams through non-Kolmogorov turbulence based on Rytov theory, Optics Express, 26, 21712-21724, 2018
[18] Lu, C.; Lin, J.; Chew, W.; Otto, G., Image reconstruction with acoustic measurement using distorted Born iteration method, Ultrason Imaging, 18, 140-156, 1996
[19] Guo, L.; Nie, Z.; Liu, G., A detection method for cable local defects based on Born iteration, Electr Power Syst Res, 226, Article 109956 pp., 2024
[20] He, Q.; Han, B.; Chen, Y.; Li, Y., Application of the finite-difference contrast source inversion method to multiparameter reconstruction using seismic full-waveform data, J Appl Geophys, 124, 4-16, 2016
[21] Lee, K., Shape reconstructions from phaseless data, Eng Anal Bound Elem, 71, 174-178, 2016 · Zbl 1403.76158
[22] Han, X.; Yang, Y.; Liu, Y., Determining the defect locations and sizes in elastic plates by using the artificial neural network and boundary element method, Eng Anal Bound Elem, 139, 232-245, 2022 · Zbl 1521.74133
[23] Kong, F.; Zhou, X.; Guo, C.; Lu, D.; Du, X., Elastic analytical method with machine learning for predicting the stratum displacement field induced by shallow tunneling, Eng Anal Bound Elem, 159, 201-212, 2024 · Zbl 07855266
[24] Zhang, Z.; Wang, H.; Xu, F.; Jin, Y., Complex-valued convolutional neural network and its application in polarimetric sar image classification, IEEE Trans Geosci Remote Sens, 55, 7177-7188, 2017
[25] Sun, S.; He, Z.; Ding, D.; Ding, F., Convolutional neural network-based perturbation shooting and bouncing rays solution for recognition of targets with uncertain geometrical shapes, Eng Anal Bound Elem, 143, 613-631, 2022 · Zbl 1521.74355
[26] Gao, Y.; Liu, H.; Wang, X.; Zhang, K., On an artificial neural network for inverse scattering problems, J Comput Phys, 448, Article 110771 pp., 2022 · Zbl 1537.78008
[27] Lin, S.; Dong, M.; Liang, Z.; Guo, H.; Zheng, H., Image-based 3D reconstruction and permeability modelling of rock using enhanced interpretable deep residual learning, Eng Anal Bound Elem, 160, 187-200, 2024 · Zbl 07855299
[28] Zhang, H.; He, M.; Li, J.; Ng, M., Solving electromagnetic inverse scattering problems in inhomogeneous media by deep convolutional encoder-decoder structure, IEEE Trans Antennas and Propagation, 71, 2867-2872, 2023
[29] Badrinarayanan, V.; Kendall, A.; Cipolla, R., Segnet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE Trans Pattern Anal Mach Intell, 39, 2481-2495, 2017
[30] Yin, W.; Yang, W.; Liu, H., A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J Comput Phys, 417, Article 109594 pp., 2020 · Zbl 1437.68157
[31] Li, L.; Wang, L.; Teixeira, F.; Liu, C.; Nehorai, A.; Cui, T., Deepnis: Deep neural network for nonlinear electromagnetic inverse scattering, IEEE Trans Antennas and Propagation, 67, 1819-1825, 2019
[32] He, M.; Wei, S.; Li, J., Two-step enhanced deep learning approach for electromagnetic inverse scattering problems, IEEE Antennas Wirel Propag Lett, 18, 2254-2258, 2019
[33] He, M.; Guo, R.; Li, J.; Li, M.; Li, J.; Ng, M., Enhanced supervised descent learning technique for electromagnetic inverse scattering problems by the deep convolutional neural networks, IEEE Trans Antennas and Propagation, 70, 6195-6206, 2022
[34] Zhang, H.; He, M.; Li, J.; Ng, M., Enhanced two-step deep-learning approach for electromagnetic-inverse-scattering problems: Frequency extrapolation and scatterer reconstruction, IEEE Trans Antennas and Propagation, 71, 1662-1672, 2023
[35] Ng, M.; He, M., Deep learning based source reconstruction method using asymmetric encoder-decoder structure and physics-induced loss, J Comput Appl Math, 438, Article 115503 pp., 2024 · Zbl 1533.68312
[36] Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF conference on computer vision and pattern recognition. 2020, p. 11531-9.
[37] Zhu, M.; Jiao, L.; Liu, F.; Yang, S.; Wang, J., Residual spectral-spatial attention network for hyperspectral image classification, IEEE Trans Geosci Remote Sens, 59, 449-462, 2021
[38] Zhao, M.; Zhu, N.; Wang, L., The electromagnetic scattering from multiple arbitrarily shaped cavities with inhomogeneous anisotropic media, J Comput Phys, 489, Article 112274 pp., 2023 · Zbl 07705915
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.