×

Fast analysis of narrow-band transient electromagnetic scattering using the ACA enhanced envelope-tracking marching-on-in-time solver. (English) Zbl 1521.78008

MSC:

78A45 Diffraction, scattering
78M99 Basic methods for problems in optics and electromagnetic theory
65R20 Numerical methods for integral equations
Full Text: DOI

References:

[1] Shanker, B.; Ergin, A. A.; Aygun, K.; Michielssen, E., Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation, IEEE Trans Antennas Propag, 48, 7, 1064-1074 (2000) · Zbl 1368.78061
[2] van’t Wout, E.; van der Heul, D. R.; van der Ven, H.; Vuik, C., Design of temporal basis functions for time domain integral equation methods with predefined accuracy and smoothness, IEEE Trans Antennas Propag, 61, 1, 271-280 (2013) · Zbl 1370.78172
[3] Tian, X. Z.; Xiao, G. B.; Fang, J. P., Application of loop-flower basis functions in the time domain electric field integral equation, IEEE Trans Antennas Propag, 63, 3, 1178-1181 (2015) · Zbl 1373.78359
[4] Wang, X.; Shi, Y.; Lu, M.; Shanker, B.; Michielssen, E.; Bağcı, H., Stable and accurate marching-on-in-time solvers of time domain EFIE MFIE and CFIE based on quasi-exact integration technique, IEEE Trans Antennas Propag, 69, 4, 2218-2229 (2021)
[5] Beghein, Y.; Cools, K.; Andriulli, F., A DC-stable, well-balanced, Calderón preconditioned time domain electric field integral equation, IEEE Trans Antennas Propag, 63, 12, 5650-5660 (2015) · Zbl 1391.78005
[6] Pray, A. J.; Beghein, Y.; Nair, N. V.; Cools, K.; Bağci, H.; Shanker, B., A higher order space-time Galerkin scheme for time domain integral equations, IEEE Trans Antennas Propag, 62, 12, 6183-6191 (2014) · Zbl 1371.78317
[7] Chen, S. T.; Ding, D. Z.; Fan, Z. H.; Chen, R. S., Time-domain impulse response with the TD-VSIE field-circuit coupling algorithm for nonlinear analysis of microwave amplifier, IEEE Microwav Wirel Compon Lett, 27, 5, 431-433 (2018)
[8] O’Connor, S., A novel port/network parameter extraction technique for coupling circuits with full-wave time-domain integral equation solvers, IEEE Trans Microwav Theory Tech, 67, 2, 553-564 (2019)
[9] Liu, Y.; Yücel, A. C.; Bagci, H.; Gilbert, A. C.; Michielssen, E., A wavelet-enhanced PWTD-accelerated time-domain integral equation solver for analysis of transient scattering from electrically large conducting objects, IEEE Trans Antennas Propag, 66, 5, 2458-2470 (2018)
[10] Yilmaz, A.; Jin, J. M.; Michielssen, E., Analysis of low-frequency electromagnetic transients by an extended time-domain adaptive integral method, IEEE Trans Adv Packag, 30, 2, 301-312 (2007)
[11] Cheng, G. S.; Chen, R. S., Fast analysis of transient electromagnetic scattering using the Taylor series expansion enhanced time domain integral equation solver, IEEE Trans Antennas Propag, 64, 9, 3943-3952 (2016) · Zbl 1391.78016
[12] Cheng, G. S.; Fan, Z. H.; Ding, D. Z.; Chen, R. S., An efficient high order plane wave time domain algorithm for transient electromagnetic scattering analysis, Eng Anal Bound Elem, 85, 13-19 (2017) · Zbl 1403.78015
[13] Mohan, A.; Weile, D. S., A hybrid method of moments-marching on in time for the solution of electromagnetic scattering problems, IEEE Trans Antennas Propag, 53, 3, 1237-1242 (2005) · Zbl 1369.78262
[14] Kaur, G.; Yılmaz, A. E., On the performance of envelope-tracking surface-integral equation solvers, (Proceedings of the IEEE Antennas and Propagation Society International Symposium (2011)), 2716-2719
[15] Subramanian, V.; Ylmaz, A. E., An envelope-tracking hybrid field-circuit simulator for narrowband analysis of nonlinearly loaded wire antennas, IEEE Trans Microwav Theory Tech, 62, 2, 208-223 (2014)
[16] Kaur, G.; Ylmaz, A. E., Envelope-tracking adaptive integral method for band-pass transient scattering analysis, IEEE Trans Antennas Propag, 63, 2215-2227 (2015)
[17] Bebendorf, M., Approximation of boundary element matrices, Numer Math, 86, 4, 565-589 (2000) · Zbl 0966.65094
[18] Zhao, K.; Vouvakis, M. N.; Lee, J. F., The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems, IEEE Trans Electromagn Compat, 47, 4, 763-773 (2005)
[19] Shaeffer, J., Direct solve of electrically large integral equations for problem sizes to 1M unknowns, IEEE Trans Antennas Propag, 56, 8, 2306-2313 (2008) · Zbl 1369.78628
[20] Su, T.; Ding, D. Z.; Fan, Z. H.; Chen, R. S., Efficient analysis of EM scattering from bodies of revolution via the ACA, IEEE Trans Antennas Propag, 62, 2, 983-985 (2014)
[21] Heldring, A.; Ubeda, E.; Rius, J. M., Improving the accuracy of the adaptive cross approximation with a convergence criterion based on random sampling, IEEE Trans Antennas Propag, 69, 1, 347-355 (2021)
[22] Fang, Xiaoxing; Heldring, Alexander; Rius, Juan M.; Chen, Xinlei; Cao, Qunsheng, Nested fast adaptive cross approximation algorithm for solving electromagnetic scattering problems, IEEE Trans Microwav Theory Tech, 68, 12, 4995-5003 (2020)
[23] Zhang, H. H.; Wang, Q. Q.; Shi, Y. F.; Chen, R. S., Efficient marching-on-in-degree solver of time domain integral equation with adaptive cross approximation algorithm-singular value decomposition, Appl Comput Electromagn Soc J, 27, 6, 475-482 (2012)
[24] He, Z.; Zhang, H. H.; Chen, R. S., Parallel marching-on-in-degree solver of time-domain combined field integral equation for bodies of revolution accelerated by MLACA, IEEE Trans Antennas Propag, 63, 8, 3705-3710 (2015) · Zbl 1373.78450
[25] Chew, W. C.; Jin, J.-M.; Michielssen, E.; Song, J., Fast and efficient algorithms in computational electromagnetics [M] (2000), Artech House Publishers
[26] Rao, S. M.; Wilton, D. R., Transient scattering by conducting surfaces of arbitrary shape, IEEE Trans Antennas Prop, 39, 1, 56-61 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.