×

Electromagnetic scattering analysis of large-area vegetation based on multilevel periodic fast multipole algorithm. (English) Zbl 1521.78028

MSC:

78M99 Basic methods for problems in optics and electromagnetic theory
65M80 Fundamental solutions, Green’s function methods, etc. for initial value and initial-boundary value problems involving PDEs
78A45 Diffraction, scattering
92D40 Ecology
Full Text: DOI

References:

[1] Woodwell, G. M., The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing (1984), John Wiley & Sons: John Wiley & Sons New York, US
[2] Hoffer, R. M.; Lozano-Garcia, D. F.; Gillespie, D. D., Characterizing forest stands with multi-incidence angle and multi-polarized SAR data, Adv Space Res, 7, 11, 309-312 (1987)
[3] Dobson, M. C.; Ulaby, F. T.; Pierce, L. E., Land-cover classification and estimation of terrain attributes using synthetic aperture radar, Remote Sens Environ, 51, 1, 199-214 (1995)
[4] Zoughi, R.; Wu, L. K.; K. Moore, R., Identification of major backscattering sources in trees and shrubs at 10 GHz, Remote Sens Environ, 19, 3, 269-290 (1986)
[5] Karam, M. A.; Fung, A. K., Electromagnetic scattering from a layer of finite length, randomly oriented, dielectric, circular cylinders over a rough interface with application to vegetation, Int J Remote Sens, 9, 6, 1109-1134 (1988)
[6] Ulaby, F. T.; McDonald, K.; Sarabandi, K.; Dobson, M. C., Michigan microwave canopy scattering models (MIMICS),”, Int Geosci Remote Sens Symp, 1009 (1988), -1009
[7] Mcdonald, K. C.; Ulaby, F. T., Radiative transfer modelling of discontinuous tree canopies at microwave frequencies, Int J Remote Sens, 14, 11, 32 (1993), -32
[8] Whitt, M. W.; Ulaby, F. T., Radar response of periodic vegetation canopies, Int J Remote Sens, 15, 9, 1813-1848 (1994)
[9] Wang, H. K., A study on electromagnetic scattering characteristics of typical vegetation,” thesis (2015), Southeast University: Southeast University China
[10] Bellez, S.; Bourlier, C.; Kubické, G., 3-D Scattering From a PEC target buried beneath a dielectric rough surface: an efficient PILE-ACA algorithm for solving a hybrid KA-EFIE formulation, IEEE Trans Antennas Propag, 63, 11, 5003-5014 (Nov. 2015) · Zbl 1395.78049
[11] Wu, T.; Chen, K.; Shi, J.; Lee, H.; Fung, A. K., A study of an AIEM model for bistatic scattering from randomly rough surfaces, IEEE Trans Geosci Remote Sens, 46, 9, 2584-2598 (Sept. 2008)
[12] Sheng, W. T.; Zhu, Z. Y.; Tong, M. S., On the method of moments solutions for volume integral equations with inhomogeneous dielectric media, IEEE Antennas Wirel Propag Lett, 11, 1154-1157 (2012)
[13] Rao, S. M.; Cha, C. C.; Cravey, R. L.; Wilkes, D. L., Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness, IEEE Trans Antennas Propag, 39, 5, 627-631 (May 1991)
[14] Gu, J. H.; He, Z., Electromagnetic modeling for FSS with anisotropic substrate by using a hybrid-accelerated VSIE method, Eng Anal Boundary Elem, 133, 110-117 (2020) · Zbl 1464.78028
[15] He, Z.; Gu, J. H.; Sha, W. E.I.; Chen, R. S., Efficient volumetric method of moments for modeling plasmonic thin-film solar cells with periodic structures, Opt Express, 26, 19, 25037-25046 (2018)
[16] Chiang, I.-T.; Chew, W. C., Improvement for scattering by a thin dielectric sheet using surface integral equation, (2005 IEEE Antennas and Propagation Society International Symposium (2005)), 380-383
[17] Chiang, I.-T.; Chew, W. C., Thin dielectric sheet simulation by surface integral equation using modified RWG and pulse bases, IEEE Trans Antennas Propag, 54, 7, 1927-1934 (July 2006)
[18] Rokhlin, V.; Wandzura, S., The fast multipole method for periodic structures, (Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting (1994)), 424-426
[19] Baczewski, A. D.; Dault, D. L.; Shanker, B., Accelerated cartesian expansions for the rapid solution of periodic multiscale problems, IEEE Trans Antennas Propag, 60, 9, 4281-4290 (Sept. 2012) · Zbl 1369.78138
[20] Wei, M.; Chew, W. C., A broadband ML-FMA for 3-D periodic green’s function in 2-D lattice using Ewald summation, IEEE Trans Antennas Propag, 65, 6, 3134-3145 (June 2017)
[21] He, Z.; Li, Y. S.; Zhao, Y.; Wan, J.; Yin, H. C.; Chen, R. S., Uncertainty RCS computation for multiple and multilayer thin medium-coated conductors by an improved TDS approximation, IEEE Trans Antennas Propag, 68, 12, 8053-8061 (2020)
[22] Arens, T.; Sandfort, K.; Schmitt, S.; Lechleiter, A., Analysing Ewald’s method for the evaluation of Green’s functions for periodic media, IMA J Appl Math, 78, 3, 405-431 (2013) · Zbl 1283.35014
[23] Sheng, X. Q., A Brief Treatise on Computational Electromagnetics (2007), Press of University of Science and Technology of China: Press of University of Science and Technology of China Beijing, China
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.