×

Boundary localization of transmission eigenfunctions in spherically stratified media. (English) Zbl 1530.35293

Summary: Consider the transmission eigenvalue problem for \(u \in H^1 (\Omega)\) and \(v \in H^1 (\Omega)\): \[ \begin{aligned} \begin{cases} \nabla \cdot (\sigma \nabla u) + k^2 \mathbf{n}^2 u = 0 \quad &\text{in } \Omega,\\ \Delta v + k^2 v = 0 \quad &\text{in } \Omega,\\ u = v, \sigma \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} &\text{on } \partial \Omega, \end{cases} \end{aligned} \] where \(\Omega\) is a ball in \(\mathbb{R}^N\), \(N = 2, 3\). If \(\sigma\) and \(\mathbf{n}\) are both radially symmetric, namely they are functions of the radial parameter \(r\) only, we show that there exists a sequence of transmission eigenfunctions \(\{u_m, v_m\}_{m \in \mathbb{N}}\) associated with \(k_m \rightarrow + \infty\) as \(m \rightarrow + \infty\) such that the \(L^2\)-energies of \(v_m\)’s are concentrated around \(\partial \Omega\). If \(\sigma\) and \(\mathbf{n}\) are both constant, we show the existence of transmission eigenfunctions \(\{u_j, v_j\}_{j \in \mathbb{N}}\) such that both \(u_j\) and \(v_j\) are localized around \(\partial \Omega\). Our results extend the recent studies in [Y. T. Chow et al., SIAM J. Imaging Sci. 14, No. 3, 946–975 (2021; Zbl 1478.35159)]. Through numerics, we also discuss the effects of the medium parameters, namely \(\sigma\) and \(\mathbf{n}\), on the geometric patterns of the transmission eigenfunctions.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
78A45 Diffraction, scattering
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
35P25 Scattering theory for PDEs
35J25 Boundary value problems for second-order elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
35R30 Inverse problems for PDEs

Citations:

Zbl 1478.35159

References:

[1] D. Aharonov and U. Elias, Singular Sturm comparison theorems, J. Math. Anal. Appl. 371 (2010), 759-763. doi:10.1016/ j.jmaa.2010.05.071. · Zbl 1202.34066 · doi:10.1016/j.jmaa.2010.05.071
[2] H. Ammari, Y.T. Chow and H. Liu, Localized sensitivity analysis at high-curvature boundary points of reconstructing inclusions in transmission problems, SIAM J. Math. Anal. 54(2) (2022), 1543-1592. doi:10.1137/20M1323576. · Zbl 1485.35419 · doi:10.1137/20M1323576
[3] E. Blåsten, Nonradiating sources and transmission eigenfunctions vanish at corners and edges, SIAM J. Math. Anal. 50(6) (2018), 6255-6270. doi:10.1137/18M1182048. · Zbl 1409.35164 · doi:10.1137/18M1182048
[4] E. Blåsten, X. Li, H. Liu and Y. Wang, On vanishing and localizing of transmission eigenfunctions near singular points: A numerical study, Inverse Problems 33 (2017), 105001. doi:10.1088/1361-6420/aa8826. · Zbl 1442.65332 · doi:10.1088/1361-6420/aa8826
[5] E. Blåsten and Y.-H. Lin, Radiating and non-radiating sources in elasticity, Inverse Problems 35(1) (2019), 015005. doi:10. 1088/1361-6420/aae99e. · Zbl 1408.74032 · doi:10.1088/1361-6420/aae99e
[6] E. Blåsten and H. Liu, On vanishing near corners of transmission eigenfunctions, J. Funct. Anal. 273 (2017), 3616-3632, Addendum: arXiv:1710.08089. doi:10.1016/j.jfa.2017.08.023. · Zbl 1387.35437 · doi:10.1016/j.jfa.2017.08.023
[7] E. Blåsten and H. Liu, Recovering piecewise-constant refractive indices by a single far-field pattern, Inverse Problems 36(8) (2020), 085005. doi:10.1088/1361-6420/ab958f. · Zbl 1446.35262 · doi:10.1088/1361-6420/ab958f
[8] E. Blåsten and H. Liu, Scattering by curvatures, radiationless sources, transmission eigenfunctions and inverse scattering problems, SIAM J. Math. Anal. 53(4) (2021), 3801-3837. doi:10.1137/20M1384002. · Zbl 1479.35838 · doi:10.1137/20M1384002
[9] E. Blåsten and H. Liu, On corners scattering stably and stable shape determination by a single far-field pattern, Indiana Univ. Math. J. 70 (2021), 907-947. doi:10.1512/iumj.2021.70.8411. · Zbl 1479.35648 · doi:10.1512/iumj.2021.70.8411
[10] E. Blåsten, H. Liu and J. Xiao, On an electromagnetic problem in a corner and its applications, Anal. PDE 14(7) (2021), 2207-2224. doi:10.2140/apde.2021.14.2207. · Zbl 1480.78011 · doi:10.2140/apde.2021.14.2207
[11] E. Blåsten, L. Päivärinta and J. Sylvester, Corners always scatter, Comm. Math. Phys. 331 (2014), 725-753. doi:10.1007/ s00220-014-2030-0. · Zbl 1298.35214 · doi:10.1007/s00220-014-2030-0
[12] X. Cao, H. Diao and H. Liu, Determining a piecewise conductive medium body by a single far-field measurement, CSIAM Trans. Appl. Math. 1 (2020), 740-765. doi:10.4208/csiam-am.2020-0020. · doi:10.4208/csiam-am.2020-0020
[13] X. Cao, H. Diao, H. Liu and J. Zou, On nodal and generalized singular structures of Laplacian eigenfunctions and ap-plications to inverse scattering problems, J. Math. Pures Appl. (9) 143 (2020), 116-161. doi:10.1016/j.matpur.2020.09. 011. · Zbl 1452.35120 · doi:10.1016/j.matpur.2020.09.011
[14] Y.-T. Chow, Y. Deng, Y. He, H. Liu and X. Wang, Surface-localized transmission eigenstates, super-resolution imaging and pseudo surface plasmon modes, SIAM J. Imaging Sci. 14(3) (2021), 946-975. doi:10.1137/20M1388498. · Zbl 1478.35159 · doi:10.1137/20M1388498
[15] Y.-T. Chow, Y. Deng, H. Liu and M. Sunkula, Surface concentration of transmission eigenfunctions, arXiv:2109.14361.
[16] Y. Deng, C. Duan and H. Liu, On vanishing near corners of conductive transmission eigenfunctions, Res. Math. Sci. 9(1) (2022), 2. doi:10.1007/s40687-021-00299-8. · Zbl 1481.35301 · doi:10.1007/s40687-021-00299-8
[17] Y. Deng, Y. Jiang, H. Liu and K. Zhang, On new surface-localized transmission eigenmodes, Inverse Probl. Imaging 16(3) (2022), 595-611. doi:10.3934/ipi.2021063. · Zbl 1487.35266 · doi:10.3934/ipi.2021063
[18] Y. Deng, H. Liu, X. Wang and W. Wu, On geometrical properties of electromagnetic transmission eigenfunctions and artificial mirage, SIAM J. Appl. Math. 82(1) (2022), 1-24. doi:10.1137/21M1413547. · Zbl 1482.35149 · doi:10.1137/21M1413547
[19] H. Diao, X. Cao and H. Liu, On the geometric structures of transmission eigenfunctions with a conductive boundary con-dition and applications, Comm. Partial Differential Equations 46 (2021), 630-679. doi:10.1080/03605302.2020.1857397. · Zbl 1475.35328 · doi:10.1080/03605302.2020.1857397
[20] H. Diao, X. Fei and H. Liu, Local geometric properties of conductive transmission eigenfunctions and applications, arXiv: 2206.01933.
[21] H. Diao, X. Fei, H. Liu and K. Yang, Visibility, invisibility and unique recovery of inverse electromagnetic problems with conical singularities, arXiv:2204.02835.
[22] H. Diao, H. Liu and B. Sun, On a local geometric property of the generalized elastic transmission eigenfunctions and application, Inverse Problems 37 (2021), 105015. doi:10.1088/1361-6420/ac23c2. · Zbl 1479.35286 · doi:10.1088/1361-6420/ac23c2
[23] H. Diao, H. Liu and L. Wang, On generalized Holmgren’s principle to the Lamé operator with applications to inverse elastic problems, Calc. Var. Partial Differential Equations 59(5) (2020), 179. doi:10.1007/s00526-020-01830-5. · Zbl 1450.35290 · doi:10.1007/s00526-020-01830-5
[24] H. Diao, H. Liu and L. Wang, Further results on generalized Holmgren’s principle to the Lamé operator and applications, J. Differential Equations 309 (2022), 841-882. doi:10.1016/j.jde.2021.11.039. · Zbl 1483.35250 · doi:10.1016/j.jde.2021.11.039
[25] H. Diao, H. Liu, X. Wang and K. Yang, On vanishing and localizing around corners of electromagnetic transmission resonance, Partial Differ. Equ. Appl. 2(6) (2021), 78. doi:10.1007/s42985-021-00131-6. · Zbl 1477.78003 · doi:10.1007/s42985-021-00131-6
[26] H. Diao, H. Liu, L. Zhang and J. Zou, Unique continuation from a generalized impedance edge-corner for Maxwell’s system and applications to inverse problems, Inverse Problems 37(3) (2021), 035004. doi:10.1088/1361-6420/abdb42. · Zbl 1456.35192 · doi:10.1088/1361-6420/abdb42
[27] Y. He, H. Liu and X. Wang, Invisibility enables super-visibility in electromagnetic imaging, arXiv:2112.07896.
[28] H. Li and H. Liu, On anomalous localized resonance and plasmonic cloaking beyond the quasistatic limit, Proceedings of the Royal Society A 474 (2018), 20180165. doi:10.1098/rspa.2018.0165. · Zbl 1407.35228 · doi:10.1098/rspa.2018.0165
[29] H. Liu, On local and global structures of transmission eigenfunctions and beyond, J. Inverse Ill-Posed Probl. 30(2) (2022), 287-305. doi:10.1515/jiip-2020-0099. · Zbl 1486.35320 · doi:10.1515/jiip-2020-0099
[30] H. Liu, Z. Shang, H. Sun and J. Zou, On singular perturbation of the reduced wave equation and scattering from an embedded obstacle, J. Dynamics and Differential Equations 24 (2012), 803-821. doi:10.1007/s10884-012-9270-5. · Zbl 1257.35174 · doi:10.1007/s10884-012-9270-5
[31] H. Liu and C.-H. Tsou, Stable determination of polygonal inclusions in Calderón’s problem by a single partial boundary measurement, Inverse Problems 36(8) (2020), 085010. doi:10.1088/1361-6420/ab9d6b. · Zbl 1445.35334 · doi:10.1088/1361-6420/ab9d6b
[32] H. Liu and C.-H. Tsou, Stable determination by a single measurement, scattering bound and regularity of transmission eigenfunctions, Calc. Var. Partial Differential Equations 61(3) (2022), 91. doi:10.1007/s00526-022-02211-w. · Zbl 1492.35428 · doi:10.1007/s00526-022-02211-w
[33] H. Liu and J. Xiao, On electromagnetic scattering from a penetrable corner, SIAM J. Math. Anal. 49(6) (2017), 5207-5241. doi:10.1137/16M110753X. · Zbl 1383.78021 · doi:10.1137/16M110753X
[34] H. Liu and J. Zou, Zeros of the Bessel and spherical Bessel functions and their applications for uniqueness in inverse acoustic obstacle scattering, IMA J. Appl. Math. 72(6) (2007), 817-831. doi:10.1093/imamat/hxm013. · Zbl 1138.35072 · doi:10.1093/imamat/hxm013
[35] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univ. Press, 2000. · Zbl 0948.35001
[36] M. Salo, L. Päivärinta and E. Vesalainen, Strictly convex corners scatter, Rev. Mat. Iberoamericana 33(4) (2017), 1369-1396. doi:10.4171/RMI/975. · Zbl 1388.35138 · doi:10.4171/RMI/975
[37] M. Salo and H. Shahgholian, Free boundary methods and non-scattering phenomena, arXiv:2106.15154.
[38] R. Wong and C.K. Qu, Best possible upper and lower bounds for the zeros of the Bessel function J ν (x), Trans. Amer. Math. Soc. 351 (1999), 2833-2859. doi:10.1090/S0002-9947-99-02165-0. · Zbl 0930.41020 · doi:10.1090/S0002-9947-99-02165-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.